These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 7807228)

  • 21. The visual response properties of neurons in the nucleus of the basal optic root of the northern saw-whet owl (Aegolius acadicus).
    Wylie DR; Shaver SW; Frost BJ
    Brain Behav Evol; 1994; 43(1):15-25. PubMed ID: 8306188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Responses to moving visual stimuli in pretectal neurons of the small-spotted dogfish (Scyliorhinus canicula).
    Masseck OA; Hoffmann KP
    J Neurophysiol; 2008 Jan; 99(1):200-7. PubMed ID: 17977925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure.
    Humphrey AL; Saul AB
    J Neurophysiol; 1998 Dec; 80(6):2991-3004. PubMed ID: 9862901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid processing of retinal slip during saccades in macaque area MT.
    Price NS; Ibbotson MR; Ono S; Mustari MJ
    J Neurophysiol; 2005 Jul; 94(1):235-46. PubMed ID: 15772244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual receptive field properties of excitatory neurons in the substantia nigra.
    Nagy A; Eördegh G; Norita M; Benedek G
    Neuroscience; 2005; 130(2):513-8. PubMed ID: 15664707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The accessory optic system in the newt, Triturus cristatus: unitary response properties from the basal optic neuropil.
    Manteuffel G
    Brain Behav Evol; 1982; 21(4):175-84. PubMed ID: 6297663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Receptive field properties of single cells in the pigeon's optic tectum during cooling of the 'visual wulst'.
    Leresche N; Hardy O; Jassik-Gerschenfeld D
    Brain Res; 1983 May; 267(2):225-36. PubMed ID: 6307466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Target selection for saccadic eye movements: direction-selective visual responses in the superior colliculus.
    Horwitz GD; Newsome WT
    J Neurophysiol; 2001 Nov; 86(5):2527-42. PubMed ID: 11698540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual-ocular motor activity in the macaque pregeniculate complex.
    Livingston CA; Fedder SR
    J Neurophysiol; 2003 Jul; 90(1):226-44. PubMed ID: 12634274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. I. Functional organization of neurons discriminating between translational and rotational visual flow.
    Wylie DR; Kripalani T; Frost BJ
    J Neurophysiol; 1993 Dec; 70(6):2632-46. PubMed ID: 8120603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directional selectivity in a nonspiking interneuron of the crayfish optic lobe: evaluation of a linear model.
    Glantz RM
    J Neurophysiol; 1994 Jul; 72(1):180-93. PubMed ID: 7965004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster.
    Rhoades RW; Chalupa LM
    J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map.
    Hepp K; Van Opstal AJ; Straumann D; Hess BJ; Henn V
    J Neurophysiol; 1993 Mar; 69(3):965-79. PubMed ID: 8385203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatiotemporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons.
    Wylie DR; Crowder NA
    J Neurophysiol; 2000 Nov; 84(5):2529-40. PubMed ID: 11067995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Population encoding of spatial frequency, orientation, and color in macaque V1.
    Victor JD; Purpura K; Katz E; Mao B
    J Neurophysiol; 1994 Nov; 72(5):2151-66. PubMed ID: 7884450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primary visual cortex neurons that contribute to resolve the aperture problem.
    Guo K; Robertson R; Nevado A; Pulgarin M; Mahmoodi S; Young MP
    Neuroscience; 2006; 138(4):1397-406. PubMed ID: 16446037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropy in the representation of direction preferences in cat area 18.
    Ribot J; Tanaka S; O'Hashi K; Ajima A
    Eur J Neurosci; 2008 May; 27(10):2773-80. PubMed ID: 18489580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of superior colliculus removal on receptive-field properties of neurons in lateral suprasylvian visual area of the cat.
    Smith DC; Spear PD
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):57-75. PubMed ID: 430114
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.