These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7807518)

  • 1. Ion transport across the early chick embryo: II. Characterization and pH sensitivity of the transembryonic short-circuit current.
    Abriel H; Katz U; Kucera P
    J Membr Biol; 1994 Aug; 141(2):159-66. PubMed ID: 7807518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport across the early chick embryo: I. Electrical measurements, ionic fluxes and regional heterogeneity.
    Kucera P; Abriel H; Katz U
    J Membr Biol; 1994 Aug; 141(2):149-57. PubMed ID: 7807517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro effects of deoxynivalenol on electrical properties of intestinal mucosa of laying hens.
    Awad WA; Böhm J; Razzazi-Fazeli E; Zentek J
    Poult Sci; 2005 Jun; 84(6):921-7. PubMed ID: 15971531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH modulates cAMP-induced increase in Na+ transport across frog skin epithelium.
    Lyall V; Biber TU
    Biochim Biophys Acta; 1995 Nov; 1240(1):65-74. PubMed ID: 7495850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS; Peterson-Yantorno K; Civan MM
    Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current-noise analysis of Na absorption in the embryonic coprodeum: stimulation by aldosterone and thyroxine.
    Clauss W; Hoffmann B; Krattenmacher R; Van Driessche W
    Am J Physiol; 1993 Nov; 265(5 Pt 2):R1100-8. PubMed ID: 7694510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane.
    Novak I; Greger R
    Pflugers Arch; 1988 Jan; 411(1):58-68. PubMed ID: 3353213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectric properties of fetal alveolar epithelial monolayers.
    O'Brodovich H; Rafii B; Post M
    Am J Physiol; 1990 Apr; 258(4 Pt 1):L201-6. PubMed ID: 2159225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorptive apical amiloride-sensitive Na+ conductance in human endometrial epithelium.
    Matthews CJ; McEwan GT; Redfern CP; Thomas EJ; Hirst BH
    J Physiol; 1998 Dec; 513 ( Pt 2)(Pt 2):443-52. PubMed ID: 9806994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium.
    Altenberg GA; Stoddard JS; Reuss L
    J Gen Physiol; 1992 Feb; 99(2):241-62. PubMed ID: 1613485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amiloride-sensitive Na+ transport across cultured renal (A6) epithelium: evidence for large currents and high Na:K selectivity.
    Wills NK; Millinoff LP
    Pflugers Arch; 1990 Jul; 416(5):481-92. PubMed ID: 2172913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of amiloride on the apical cell membrane cation channels of a sodium-absorbing, potassium-secreting renal epithelium.
    O'Neil RG; Boulpaep EL
    J Membr Biol; 1979 Nov; 50(3-4):365-87. PubMed ID: 513119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres.
    Deitmer JW; Ellis D
    J Physiol; 1980 Jul; 304():471-88. PubMed ID: 7441547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basolateral amiloride-sensitive Na+ transport pathway in rat tongue epithelium.
    Mierson S; Olson MM; Tietz AE
    J Neurophysiol; 1996 Aug; 76(2):1297-309. PubMed ID: 8871237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium channel but neither Na(+)-H+ nor Na-glucose symport inhibitors slow neonatal lung water clearance.
    O'Brodovich H; Hannam V; Rafii B
    Am J Respir Cell Mol Biol; 1991 Oct; 5(4):377-84. PubMed ID: 1654956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmucosal electrical resistance in rabbit isolated gastric mucosa during exposure to acid.
    Spencer GE; Spraggs CF; Stables R; Hirst BH
    J Physiol; 1992 Apr; 449():169-81. PubMed ID: 1522508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of sodium and chloride transport across equine tracheal epithelium.
    Tessier GJ; Traynor TR; Kannan MS; O'Grady SM
    Am J Physiol; 1990 Dec; 259(6 Pt 1):L459-67. PubMed ID: 2260677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+.
    Ishikawa T; Marunaka Y; Rotin D
    J Gen Physiol; 1998 Jun; 111(6):825-46. PubMed ID: 9607939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrogenic sodium absorption in rabbit cecum in vitro.
    Sellin JH; Oyarzabal H; Cragoe EJ
    J Clin Invest; 1988 Apr; 81(4):1275-83. PubMed ID: 2832447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+ transport by rabbit urinary bladder, a tight epithelium.
    Lewis SA; Diamond JM
    J Membr Biol; 1976 Aug; 28(1):1-40. PubMed ID: 9512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.