These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7808272)

  • 1. Three-dimensional time-of-flight MR angiography with variable TE (VARIETE) for fat signal reduction.
    Lin W; Haacke EM; Tkach JA
    Magn Reson Med; 1994 Nov; 32(5):678-83. PubMed ID: 7808272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity encoding with the slice select refocusing gradient for faster imaging and reduced chemical shift-induced phase errors.
    Middione MJ; Thompson RB; Ennis DB
    Magn Reson Med; 2014 Jun; 71(6):2014-23. PubMed ID: 23836543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial MR angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences.
    Lin W; Tkach JA; Haacke EM; Masaryk TJ
    Radiology; 1993 Mar; 186(3):753-61. PubMed ID: 8430184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short T2 tissue imaging with the Pointwise Encoding Time reduction with Radial Acquisition (PETRA) sequence: the additional value of fat saturation and subtraction in the meniscus.
    Lee YH; Suh JS; Grodzki D
    Magn Reson Imaging; 2015 May; 33(4):385-9. PubMed ID: 25614216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing localized signal fluctuation in fMRI using spectral-spatial fat saturation.
    Xu D; Hinks RS; King KF
    Magn Reson Med; 2013 Mar; 69(3):825-31. PubMed ID: 22532447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of slab boundary artifact with multiple overlapping thin slab acquisition in MR angiography of the cervical carotid artery.
    Robison RO; Blatter DD; Parker DL; Barney WW; Perry DM; Goodrich KC
    J Magn Reson Imaging; 1994; 4(4):529-35. PubMed ID: 7949677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudostenosis of the internal carotid artery in 3D time-of-flight MR angiography: effects of a magnetization transfer contrast pulse and metallic material.
    Naganawa S; Koshikawa T; Sato K; Katagiri T; Mimura T; Ishigaki T; Aoki I
    Eur Radiol; 2003 Oct; 13(10):2298-303. PubMed ID: 12687285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-echo acquisition of MR angiography and venography of the brain at 3 Tesla.
    Du YP; Jin Z; Hu Y; Tanabe J
    J Magn Reson Imaging; 2009 Aug; 30(2):449-54. PubMed ID: 19629975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of flow-related signal loss in flow-compensated 3D TOF MR angiography, using variable echo time (3D TOF-VTE).
    Jeong EK; Parker DL; Tsuruda JS; Won JY
    Magn Reson Med; 2002 Oct; 48(4):667-76. PubMed ID: 12353284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artifacts and signal loss due to flow in the presence of B(o) inhomogeneity.
    Drangova M; Pelc NJ
    Magn Reson Med; 1996 Jan; 35(1):126-30. PubMed ID: 8771030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short versus long echo time for cranial MR angiography in children and adults.
    Smith AS; Haacke EM; Lin W; Berman B; Wiznitzer M
    AJNR Am J Neuroradiol; 1994 Sep; 15(8):1557-64. PubMed ID: 7985577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fat-subtracted three-dimensional time-of-flight MR angiography of the neck by use of fat-only images with the two-point Dixon technique.
    Fujiwara Y; Ishimori Y; Yamaguchi I; Kosaka N; Kimura H; Adachi T
    Radiol Phys Technol; 2015 Jul; 8(2):193-9. PubMed ID: 25577234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breath-hold 3D MR angiography of the renal vasculature using a contrast-enhanced multiecho gradient-echo technique.
    Papachristopoulos G; Bis KG; Shetty AN; Ross M; Bagga H; Shirkhoda A; Laub G
    Invest Radiol; 1999 Dec; 34(12):731-8. PubMed ID: 10587868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of magnetization transfer to MR angiography with reduced total power.
    Parker DL; Buswell HR; Goodrich KC; Alexander AL; Keck N; Tsuruda JS
    Magn Reson Med; 1995 Aug; 34(2):283-6. PubMed ID: 7476089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of water and fat MR images in a single scan at .35 T using "sandwich" echoes.
    Zhang W; Goldhaber DM; Kramer DM
    J Magn Reson Imaging; 1996; 6(6):909-17. PubMed ID: 8956137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of RF power for magnetization transfer with optimized application of RF pulses in k-space.
    Lin C; Bernstein MA; Gibbs GF; Huston J
    Magn Reson Med; 2003 Jul; 50(1):114-21. PubMed ID: 12815686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fat suppression with short inversion time inversion-recovery and chemical-shift selective saturation: a dual STIR-CHESS combination prepulse for turbo spin echo pulse sequences.
    Tanabe K; Nishikawa K; Sano T; Sakai O; Jara H
    J Magn Reson Imaging; 2010 May; 31(5):1277-81. PubMed ID: 20432368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved time-of-flight magnetic resonance angiography with IDEAL water-fat separation.
    Grayev A; Shimakawa A; Cousins J; Turski P; Brittain J; Reeder S
    J Magn Reson Imaging; 2009 Jun; 29(6):1367-74. PubMed ID: 19472410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase enhancement for time-of-flight and flow-sensitive black-blood MR angiography.
    Kimura T; Ikedo M; Takemoto S
    Magn Reson Med; 2011 Aug; 66(2):437-47. PubMed ID: 21360743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding.
    Schubert T; Bieri O; Pansini M; Stippich C; Santini F
    Invest Radiol; 2014 Apr; 49(4):189-94. PubMed ID: 24300842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.