These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7808415)

  • 1. The homeotic Macho mutant of Antirrhinum majus reverts to wild-type or mutates to the homeotic plena phenotype.
    Lönnig WE; Saedler H
    Mol Gen Genet; 1994 Dec; 245(5):636-43. PubMed ID: 7808415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum.
    Bradley D; Carpenter R; Sommer H; Hartley N; Coen E
    Cell; 1993 Jan; 72(1):85-95. PubMed ID: 8093684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic interactions among floral homeotic genes of Arabidopsis.
    Bowman JL; Smyth DR; Meyerowitz EM
    Development; 1991 May; 112(1):1-20. PubMed ID: 1685111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus.
    Carpenter R; Coen ES
    Genes Dev; 1990 Sep; 4(9):1483-93. PubMed ID: 1979295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The S locus-linked Primula homeotic mutant sepaloid shows characteristics of a B-function mutant but does not result from mutation in a B-function gene.
    Li J; Webster M; Dudas B; Cook H; Manfield I; Davies B; Gilmartin PM
    Plant J; 2008 Oct; 56(1):1-12. PubMed ID: 18564384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus.
    Okamoto H; Yano A; Shiraishi H; Okada K; Shimura Y
    Plant Mol Biol; 1994 Oct; 26(1):465-72. PubMed ID: 7948893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant.
    Zachgo S; Silva Ede A; Motte P; Tröbner W; Saedler H; Schwarz-Sommer Z
    Development; 1995 Sep; 121(9):2861-75. PubMed ID: 7555713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis.
    Tröbner W; Ramirez L; Motte P; Hue I; Huijser P; Lönnig WE; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1992 Dec; 11(13):4693-704. PubMed ID: 1361166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum.
    McSteen PC; Vincent CA; Doyle S; Carpenter R; Coen ES
    Development; 1998 Jul; 125(13):2359-69. PubMed ID: 9609819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of two stamen-specific genes, tap1 and fil1, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus.
    Nacken WK; Huijser P; Beltran JP; Saedler H; Sommer H
    Mol Gen Genet; 1991 Sep; 229(1):129-36. PubMed ID: 1680216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens.
    Jack T; Brockman LL; Meyerowitz EM
    Cell; 1992 Feb; 68(4):683-97. PubMed ID: 1346756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant.
    Tsuchimoto S; van der Krol AR; Chua NH
    Plant Cell; 1993 Aug; 5(8):843-53. PubMed ID: 8104573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of early floral ontogeny in wild-type and floral homeotic mutant phenotypes of Primula.
    Webster MA; Gilmartin PA
    Planta; 2003 Apr; 216(6):903-17. PubMed ID: 12687358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus.
    Luo D; Coen ES; Doyle S; Carpenter R
    Plant J; 1991 Jul; 1(1):59-69. PubMed ID: 1668965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis.
    Angenent GC; Busscher M; Franken J; Dons HJ; van Tunen AJ
    Plant Cell; 1995 May; 7(5):507-16. PubMed ID: 7780304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product.
    Drews GN; Bowman JL; Meyerowitz EM
    Cell; 1991 Jun; 65(6):991-1002. PubMed ID: 1675158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular analysis of tap2, an anther-specific gene from Antirrhinum majus.
    Nacken WK; Huijser P; Saedler H; Sommer H
    FEBS Lett; 1991 Mar; 280(1):155-8. PubMed ID: 1672656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tam3 produces a suppressible allele of the DAG locus of Antirrhinum majus similar to Mu-suppressible alleles of maize.
    Chatterjee M; Martin C
    Plant J; 1997 Apr; 11(4):759-71. PubMed ID: 9161034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.