BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7808422)

  • 1. The carboxyl terminus of bovine rhodopsin is not required for G protein activation.
    Osawa S; Weiss ER
    Mol Pharmacol; 1994 Dec; 46(6):1036-40. PubMed ID: 7808422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of carboxyl-terminal truncation on the stability and G protein-coupling activity of bovine rhodopsin.
    Weiss ER; Osawa S; Shi W; Dickerson CD
    Biochemistry; 1994 Jun; 33(24):7587-93. PubMed ID: 8011624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal.
    Shi W; Sports CD; Raman D; Shirakawa S; Osawa S; Weiss ER
    Biochemistry; 1998 Apr; 37(14):4869-74. PubMed ID: 9538004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin.
    Raman D; Osawa S; Weiss ER
    Biochemistry; 1999 Apr; 38(16):5117-23. PubMed ID: 10213616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
    Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG
    Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of the second extracellular loop of rhodopsin by characterizing split variants.
    Sakai K; Imamoto Y; Yamashita T; Shichida Y
    Photochem Photobiol Sci; 2010 Nov; 9(11):1490-7. PubMed ID: 20886156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural coupling of 11-cis-7-methyl-retinal and amino acids at the ligand binding pocket of rhodopsin.
    Aguilà M; Toledo D; Morillo M; Dominguez M; Vaz B; Alvarez R; de Lera AR; Garriga P
    Photochem Photobiol; 2009; 85(2):485-93. PubMed ID: 19267873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G protein subtype specificity of rhodopsin intermediates metarhodopsin Ib and metarhodopsin II.
    Morizumi T; Kimata N; Terakita A; Imamoto Y; Yamashita T; Shichida Y
    Photochem Photobiol; 2009; 85(1):57-62. PubMed ID: 18643908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple purification and functional reconstitution of octopus photoreceptor Gq, which couples rhodopsin to phospholipase C.
    Kikkawa S; Tominaga K; Nakagawa M; Iwasa T; Tsuda M
    Biochemistry; 1996 Dec; 35(49):15857-64. PubMed ID: 8961950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterion displacement in the molecular evolution of the rhodopsin family.
    Terakita A; Koyanagi M; Tsukamoto H; Yamashita T; Miyata T; Shichida Y
    Nat Struct Mol Biol; 2004 Mar; 11(3):284-9. PubMed ID: 14981504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction.
    Marin EP; Krishna AG; Zvyaga TA; Isele J; Siebert F; Sakmar TP
    J Biol Chem; 2000 Jan; 275(3):1930-6. PubMed ID: 10636894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin mutants discriminate sites important for the activation of rhodopsin kinase and Gt.
    Shi W; Osawa S; Dickerson CD; Weiss ER
    J Biol Chem; 1995 Feb; 270(5):2112-9. PubMed ID: 7836439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin.
    Yamashita T; Tose K; Shichida Y
    Photochem Photobiol; 2008; 84(4):931-6. PubMed ID: 18363619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
    Tsukamoto H; Terakita A; Shichida Y
    J Biol Chem; 2010 Mar; 285(10):7351-7. PubMed ID: 20053991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of the molecular organization of visual rhodopsin in photoreceptor membranes by limited proteolysis].
    Martynov VI; Kostina MB; Feĭgina MIu; Miroshnikov AI
    Bioorg Khim; 1983 Jun; 9(6):734-45. PubMed ID: 6679781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.