BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7808422)

  • 21. Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.
    Sugihara M; Fujibuchi W; Suwa M
    J Phys Chem B; 2011 May; 115(19):6172-9. PubMed ID: 21510671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of carboxyl-terminal mutagenesis of Gt alpha on rhodopsin and guanine nucleotide binding.
    Osawa S; Weiss ER
    J Biol Chem; 1995 Dec; 270(52):31052-8. PubMed ID: 8537363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct roles of the second and third cytoplasmic loops of bovine rhodopsin in G protein activation.
    Yamashita T; Terakita A; Shichida Y
    J Biol Chem; 2000 Nov; 275(44):34272-9. PubMed ID: 10930404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin.
    Franke RR; Sakmar TP; Graham RM; Khorana HG
    J Biol Chem; 1992 Jul; 267(21):14767-74. PubMed ID: 1634520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhodopsin mutants that bind but fail to activate transducin.
    Franke RR; König B; Sakmar TP; Khorana HG; Hofmann KP
    Science; 1990 Oct; 250(4977):123-5. PubMed ID: 2218504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. G protein-coupled receptor rhodopsin: a prospectus.
    Filipek S; Stenkamp RE; Teller DC; Palczewski K
    Annu Rev Physiol; 2003; 65():851-79. PubMed ID: 12471166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-directed mutagenesis of highly conserved amino acids in the first cytoplasmic loop of Drosophila Rh1 opsin blocks rhodopsin synthesis in the nascent state.
    Bentrop J; Schwab K; Pak WL; Paulsen R
    EMBO J; 1997 Apr; 16(7):1600-9. PubMed ID: 9130705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The second cytoplasmic loop of metabotropic glutamate receptor functions at the third loop position of rhodopsin.
    Yamashita T; Terakita A; Shichida Y
    J Biochem; 2001 Jul; 130(1):149-55. PubMed ID: 11432791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins.
    Tsukamoto H; Farrens DL; Koyanagi M; Terakita A
    J Biol Chem; 2009 Jul; 284(31):20676-83. PubMed ID: 19497849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Interaction between G-protein and rhodopsin].
    Tsuda M
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):546-56. PubMed ID: 2748898
    [No Abstract]   [Full Text] [Related]  

  • 31. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant.
    Chen J; Makino CL; Peachey NS; Baylor DA; Simon MI
    Science; 1995 Jan; 267(5196):374-7. PubMed ID: 7824934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism.
    Kisselev OG; Meyer CK; Heck M; Ernst OP; Hofmann KP
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4898-903. PubMed ID: 10220390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Covalent bond between ligand and receptor required for efficient activation in rhodopsin.
    Matsuyama T; Yamashita T; Imai H; Shichida Y
    J Biol Chem; 2010 Mar; 285(11):8114-21. PubMed ID: 20042594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How a small change in retinal leads to G-protein activation: initial events suggested by molecular dynamics calculations.
    Crozier PS; Stevens MJ; Woolf TB
    Proteins; 2007 Feb; 66(3):559-74. PubMed ID: 17109408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular interactions between the photoreceptor G protein and rhodopsin.
    Hamm HE
    Cell Mol Neurobiol; 1991 Dec; 11(6):563-78. PubMed ID: 1782650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain.
    Anukanth A; Khorana HG
    J Biol Chem; 1994 Aug; 269(31):19738-44. PubMed ID: 8051054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G protein-coupled receptor activation: analysis of a highly constrained, "straitjacketed" rhodopsin.
    Struthers M; Yu H; Oprian DD
    Biochemistry; 2000 Jul; 39(27):7938-42. PubMed ID: 10891074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perspectives on the counterion switch-induced photoactivation of the G protein-coupled receptor rhodopsin.
    Birge RR; Knox BE
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9105-7. PubMed ID: 12886007
    [No Abstract]   [Full Text] [Related]  

  • 39. Interaction of GTP-binding protein Gq with photoactivated rhodopsin in the photoreceptor membranes of crayfish.
    Terakita A; Hariyama T; Tsukahara Y; Katsukura Y; Tashiro H
    FEBS Lett; 1993 Sep; 330(2):197-200. PubMed ID: 8365491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling.
    Kisselev OG; Ermolaeva MV; Gautam N
    J Biol Chem; 1994 Aug; 269(34):21399-402. PubMed ID: 8063769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.