BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 7808454)

  • 1. Creatine kinase in non-muscle tissues and cells.
    Wallimann T; Hemmer W
    Mol Cell Biochem; 1994; 133-134():193-220. PubMed ID: 7808454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The creatine kinase system and pleiotropic effects of creatine.
    Wallimann T; Tokarska-Schlattner M; Schlattner U
    Amino Acids; 2011 May; 40(5):1271-96. PubMed ID: 21448658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The subcellular compartmentation of creatine kinase isozymes as a precondition for a proposed phosphoryl-creatine circuit.
    Wallimann T; Eppenberger HM
    Prog Clin Biol Res; 1990; 344():877-89. PubMed ID: 2203065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional aspects of creatine kinase in brain.
    Hemmer W; Wallimann T
    Dev Neurosci; 1993; 15(3-5):249-60. PubMed ID: 7805577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy.
    in 't Zandt HJ; Oerlemans F; Wieringa B; Heerschap A
    NMR Biomed; 1999 Oct; 12(6):327-34. PubMed ID: 10516614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites.
    Schlattner U; Klaus A; Ramirez Rios S; Guzun R; Kay L; Tokarska-Schlattner M
    Amino Acids; 2016 Aug; 48(8):1751-74. PubMed ID: 27318991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional coupling to brush border creatine kinase imparts a selective energetic advantage to contractile ring myosin in intestinal epithelial cells.
    Gordon PV; Keller TC
    Cell Motil Cytoskeleton; 1992; 21(1):38-44. PubMed ID: 1531784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Creatine kinase isoenzymes--characterization and functions in cell].
    Grzyb K; Skorkowski EF
    Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion transport in gills of the euryhaline fish Gillichthys mirabilis is facilitated by a phosphocreatine circuit.
    Kültz D; Somero GN
    Am J Physiol; 1995 Apr; 268(4 Pt 2):R1003-12. PubMed ID: 7733382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the functional properties of the creatine kinase system with multiscale 'sloppy' modeling.
    Hettling H; van Beek JH
    PLoS Comput Biol; 2011 Aug; 7(8):e1002130. PubMed ID: 21912519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence.
    Echegaray M; Rivera MA
    Sports Med; 2001; 31(13):919-34. PubMed ID: 11708401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms.
    in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A
    J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology.
    Wallimann T; Dolder M; Schlattner U; Eder M; Hornemann T; O'Gorman E; Rück A; Brdiczka D
    Biofactors; 1998; 8(3-4):229-34. PubMed ID: 9914824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit.
    Gerbitz KD; Gempel K; Brdiczka D
    Diabetes; 1996 Feb; 45(2):113-26. PubMed ID: 8549853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis.
    Wallimann T; Wyss M; Brdiczka D; Nicolay K; Eppenberger HM
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):21-40. PubMed ID: 1731757
    [No Abstract]   [Full Text] [Related]  

  • 19. Creatine kinase (CK) in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression.
    van Deursen J; Ruitenbeek W; Heerschap A; Jap P; ter Laak H; Wieringa B
    Proc Natl Acad Sci U S A; 1994 Sep; 91(19):9091-5. PubMed ID: 8090775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional equivalence of creatine kinase isoforms in mouse skeletal muscle.
    Roman BB; Wieringa B; Koretsky AP
    J Biol Chem; 1997 Jul; 272(28):17790-4. PubMed ID: 9211932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.