These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 7808455)

  • 1. The creatine kinase system in smooth muscle.
    Clark JF
    Mol Cell Biochem; 1994; 133-134():221-32. PubMed ID: 7808455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice.
    Janssen E; Terzic A; Wieringa B; Dzeja PP
    J Biol Chem; 2003 Aug; 278(33):30441-9. PubMed ID: 12730234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatine kinase binding and possible role in chemically skinned guinea-pig taenia coli.
    Clark JF; Khuchua Z; Ventura-Clapier R
    Biochim Biophys Acta; 1992 May; 1100(2):137-45. PubMed ID: 1610872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine kinase function in mitochondria isolated from gravid and non-gravid guinea-pig uteri.
    Clark JF; Kuznetsov AV; Khuchua Z; Veksler V; Ventura-Clapier R; Saks V
    FEBS Lett; 1994 Jun; 347(2-3):147-51. PubMed ID: 8033993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Creatine kinase system and muscle energy metabolism].
    Chetverikova EP
    Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505
    [No Abstract]   [Full Text] [Related]  

  • 6. The creatine kinase equilibrium, free [ADP] and myosin ATPase in vascular smooth muscle cross-bridges.
    Clark JF; Kemp GJ; Radda GK
    J Theor Biol; 1995 Mar; 173(2):207-11. PubMed ID: 7739220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of creatine kinase isoenzymes in the guinea-pig. Presence of mitochondrial creatine kinase in smooth muscle.
    Ishida Y; Wyss M; Hemmer W; Wallimann T
    FEBS Lett; 1991 May; 283(1):37-43. PubMed ID: 2037070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired muscular contractile performance and adenine nucleotide handling in creatine kinase-deficient mice.
    Gorselink M; Drost MR; Coumans WA; van Kranenburg GP; Hesselink RP; van der Vusse GJ
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E619-25. PubMed ID: 11500318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartmentation of creatine kinase isoenzymes in myometrium of gravid guinea-pig.
    Clark JF; Khuchua Z; Kuznetsov A; Saks VA; Ventura-Clapier R
    J Physiol; 1993 Jul; 466():553-72. PubMed ID: 8410707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L; Abbott BC
    J Mol Cell Cardiol; 1974 Oct; 6(5):405-13. PubMed ID: 4431045
    [No Abstract]   [Full Text] [Related]  

  • 12. Necessity of newly synthesized ATP by creatine kinase for contraction of permeabilized longitudinal muscle preparations of rat proximal colon.
    Takeuchi T; Fujita A; Ishii T; Nishio H; Hata F
    J Pharmacol Exp Ther; 1995 Oct; 275(1):429-34. PubMed ID: 7562581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional equivalence of creatine kinase isoforms in mouse skeletal muscle.
    Roman BB; Wieringa B; Koretsky AP
    J Biol Chem; 1997 Jul; 272(28):17790-4. PubMed ID: 9211932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of energetic processes in contracting human skeletal muscle.
    Sahlin K
    Biochem Soc Trans; 1991 Apr; 19(2):353-8. PubMed ID: 1889615
    [No Abstract]   [Full Text] [Related]  

  • 16. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis.
    ter Veld F; Jeneson JA; Nicolay K
    FEBS J; 2005 Feb; 272(4):956-65. PubMed ID: 15691329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action.
    Anflous K; Veksler V; Mateo P; Samson F; Saks V; Ventura-Clapier R
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):73-8. PubMed ID: 9078245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional coupling to brush border creatine kinase imparts a selective energetic advantage to contractile ring myosin in intestinal epithelial cells.
    Gordon PV; Keller TC
    Cell Motil Cytoskeleton; 1992; 21(1):38-44. PubMed ID: 1531784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentation of ATP synthesis and utilization in smooth muscle: roles of aerobic glycolysis and creatine kinase.
    Ishida Y; Riesinger I; Wallimann T; Paul RJ
    Mol Cell Biochem; 1994; 133-134():39-50. PubMed ID: 7808464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.