BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 7808455)

  • 1. The creatine kinase system in smooth muscle.
    Clark JF
    Mol Cell Biochem; 1994; 133-134():221-32. PubMed ID: 7808455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice.
    Janssen E; Terzic A; Wieringa B; Dzeja PP
    J Biol Chem; 2003 Aug; 278(33):30441-9. PubMed ID: 12730234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatine kinase binding and possible role in chemically skinned guinea-pig taenia coli.
    Clark JF; Khuchua Z; Ventura-Clapier R
    Biochim Biophys Acta; 1992 May; 1100(2):137-45. PubMed ID: 1610872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine kinase function in mitochondria isolated from gravid and non-gravid guinea-pig uteri.
    Clark JF; Kuznetsov AV; Khuchua Z; Veksler V; Ventura-Clapier R; Saks V
    FEBS Lett; 1994 Jun; 347(2-3):147-51. PubMed ID: 8033993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Creatine kinase system and muscle energy metabolism].
    Chetverikova EP
    Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505
    [No Abstract]   [Full Text] [Related]  

  • 6. The creatine kinase equilibrium, free [ADP] and myosin ATPase in vascular smooth muscle cross-bridges.
    Clark JF; Kemp GJ; Radda GK
    J Theor Biol; 1995 Mar; 173(2):207-11. PubMed ID: 7739220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of creatine kinase isoenzymes in the guinea-pig. Presence of mitochondrial creatine kinase in smooth muscle.
    Ishida Y; Wyss M; Hemmer W; Wallimann T
    FEBS Lett; 1991 May; 283(1):37-43. PubMed ID: 2037070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired muscular contractile performance and adenine nucleotide handling in creatine kinase-deficient mice.
    Gorselink M; Drost MR; Coumans WA; van Kranenburg GP; Hesselink RP; van der Vusse GJ
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E619-25. PubMed ID: 11500318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartmentation of creatine kinase isoenzymes in myometrium of gravid guinea-pig.
    Clark JF; Khuchua Z; Kuznetsov A; Saks VA; Ventura-Clapier R
    J Physiol; 1993 Jul; 466():553-72. PubMed ID: 8410707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L; Abbott BC
    J Mol Cell Cardiol; 1974 Oct; 6(5):405-13. PubMed ID: 4431045
    [No Abstract]   [Full Text] [Related]  

  • 12. Necessity of newly synthesized ATP by creatine kinase for contraction of permeabilized longitudinal muscle preparations of rat proximal colon.
    Takeuchi T; Fujita A; Ishii T; Nishio H; Hata F
    J Pharmacol Exp Ther; 1995 Oct; 275(1):429-34. PubMed ID: 7562581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional equivalence of creatine kinase isoforms in mouse skeletal muscle.
    Roman BB; Wieringa B; Koretsky AP
    J Biol Chem; 1997 Jul; 272(28):17790-4. PubMed ID: 9211932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of energetic processes in contracting human skeletal muscle.
    Sahlin K
    Biochem Soc Trans; 1991 Apr; 19(2):353-8. PubMed ID: 1889615
    [No Abstract]   [Full Text] [Related]  

  • 16. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis.
    ter Veld F; Jeneson JA; Nicolay K
    FEBS J; 2005 Feb; 272(4):956-65. PubMed ID: 15691329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action.
    Anflous K; Veksler V; Mateo P; Samson F; Saks V; Ventura-Clapier R
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):73-8. PubMed ID: 9078245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional coupling to brush border creatine kinase imparts a selective energetic advantage to contractile ring myosin in intestinal epithelial cells.
    Gordon PV; Keller TC
    Cell Motil Cytoskeleton; 1992; 21(1):38-44. PubMed ID: 1531784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentation of ATP synthesis and utilization in smooth muscle: roles of aerobic glycolysis and creatine kinase.
    Ishida Y; Riesinger I; Wallimann T; Paul RJ
    Mol Cell Biochem; 1994; 133-134():39-50. PubMed ID: 7808464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.