BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7808464)

  • 1. Compartmentation of ATP synthesis and utilization in smooth muscle: roles of aerobic glycolysis and creatine kinase.
    Ishida Y; Riesinger I; Wallimann T; Paul RJ
    Mol Cell Biochem; 1994; 133-134():39-50. PubMed ID: 7808464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Necessity of newly synthesized ATP by creatine kinase for contraction of permeabilized longitudinal muscle preparations of rat proximal colon.
    Takeuchi T; Fujita A; Ishii T; Nishio H; Hata F
    J Pharmacol Exp Ther; 1995 Oct; 275(1):429-34. PubMed ID: 7562581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth muscle and NMR review: an overview of smooth muscle metabolism.
    Nakayama S; Clark JF
    Mol Cell Biochem; 2003 Feb; 244(1-2):17-30. PubMed ID: 12701805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of creatine kinase and adenylate kinase systems in muscle cells.
    Savabi F
    Mol Cell Biochem; 1994; 133-134():145-52. PubMed ID: 7808452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L; Abbott BC
    J Mol Cell Cardiol; 1974 Oct; 6(5):405-13. PubMed ID: 4431045
    [No Abstract]   [Full Text] [Related]  

  • 6. In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve.
    Wegmann G; Zanolla E; Eppenberger HM; Wallimann T
    J Muscle Res Cell Motil; 1992 Aug; 13(4):420-35. PubMed ID: 1401038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity.
    van Deursen J; Heerschap A; Oerlemans F; Ruitenbeek W; Jap P; ter Laak H; Wieringa B
    Cell; 1993 Aug; 74(4):621-31. PubMed ID: 8358791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creatine kinase in non-muscle tissues and cells.
    Wallimann T; Hemmer W
    Mol Cell Biochem; 1994; 133-134():193-220. PubMed ID: 7808454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential support of Ca2+ uptake in smooth muscle plasma membrane vesicles by an endogenous glycolytic cascade.
    Paul RJ; Hardin CD; Raeymaekers L; Wuytack F; Casteels R
    FASEB J; 1989 Sep; 3(11):2298-301. PubMed ID: 2528493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for compartmentation of high energy phosphagens in smooth muscle.
    Ishida Y; Paul RJ
    Prog Clin Biol Res; 1989; 315():417-28. PubMed ID: 2678158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The creatine kinase system and pleiotropic effects of creatine.
    Wallimann T; Tokarska-Schlattner M; Schlattner U
    Amino Acids; 2011 May; 40(5):1271-96. PubMed ID: 21448658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis.
    Wallimann T; Wyss M; Brdiczka D; Nicolay K; Eppenberger HM
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):21-40. PubMed ID: 1731757
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate.
    Cave AC; Ingwall JS; Friedrich J; Liao R; Saupe KW; Apstein CS; Eberli FR
    Circulation; 2000 May; 101(17):2090-6. PubMed ID: 10790352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy related metabolic alterations in diaphragm muscle resulting from acute methomyl toxicity.
    Gupta RC; Goad JT; Kadel WL
    Neurotoxicology; 1994; 15(2):321-30. PubMed ID: 7991221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The creatine kinase system in smooth muscle.
    Clark JF
    Mol Cell Biochem; 1994; 133-134():221-32. PubMed ID: 7808455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H- and 31P-NMR studies on smooth muscle of bullfrog stomach.
    Yoshizaki K; Radda GK; Inubushi T; Chance B
    Biochim Biophys Acta; 1987 Apr; 928(1):36-44. PubMed ID: 3493810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes.
    Dzeja PP; Zeleznikar RJ; Goldberg ND
    Mol Cell Biochem; 1998 Jul; 184(1-2):169-82. PubMed ID: 9746320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P-NMR study on intracellular energy transport in muscle.
    Yoshizaki K
    Prog Clin Biol Res; 1989; 315():177-84. PubMed ID: 2798486
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.