These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7810330)

  • 1. Spectral sensitivities of short- and long-wavelength sensitive cone mechanisms in the frog retina.
    Koskelainen A; Hemilä S; Donner K
    Acta Physiol Scand; 1994 Sep; 152(1):115-24. PubMed ID: 7810330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appearance of a Purkinje shift in the developing retina of the chick.
    Chen DM; Goldsmith TH
    J Exp Zool; 1984 Feb; 229(2):265-71. PubMed ID: 6736886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical electroretinography for short wavelength sensitive cones.
    Sawusch M; Pokorny J; Smith VC
    Invest Ophthalmol Vis Sci; 1987 Jun; 28(6):966-74. PubMed ID: 3583635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Light adaptation shift in the spectral sensitivity of cones in the frog Rana temporaria].
    Zak PP; Novitskiĭ IIu; Ostrovskiĭ MA
    Zh Evol Biokhim Fiziol; 1981; 17(5):467-73. PubMed ID: 6974934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological evidence for rod-like receptors in the gray squirrel, ground squirrel and prairie dog retinas.
    Green DG; Dowling JE
    J Comp Neurol; 1975 Feb; 159(4):461-72. PubMed ID: 1127140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).
    Vlahos LM; Knott B; Valter K; Hemmi JM
    J Comp Neurol; 2014 Oct; 522(15):3423-36. PubMed ID: 24737644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scotopic and photopic vision in the California ground squirrel: physiological and anatomical evidence.
    Jacobs GH; Fisher SK; Anderson DH; Silverman MS
    J Comp Neurol; 1976 Jan; 165(2):209-27. PubMed ID: 1245613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional selectivity and colour coding in the frog retina.
    Bäckström AC; Hemilä S; Reuter T
    Med Biol; 1978 Apr; 56(2):72-83. PubMed ID: 307098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroretinographic responses of the short-wavelength-sensitive cones.
    Gouras P; MacKay CJ
    Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1203-9. PubMed ID: 2365554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light adaptation of cone photoresponses studied at the photoreceptor and ganglion cell levels in the frog retina.
    Donner K; Hemilä S; Koskelainen A
    Vision Res; 1998 Jan; 38(1):19-36. PubMed ID: 9474372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation-related changes in the spatial and temporal summation of frog retinal ganglion cells.
    Donner K
    Acta Physiol Scand; 1987 Dec; 131(4):479-87. PubMed ID: 3502059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral sensitivities of seven morphological types of photoreceptors in the retina of the turtle, Geoclemys reevesii.
    Ohtsuka T
    J Comp Neurol; 1985 Jul; 237(2):145-54. PubMed ID: 4031119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of thermal contribution to photoreceptor sensitivity.
    Koskelainen A; Ala-Laurila P; Fyhrquist N; Donner K
    Nature; 2000 Jan; 403(6766):220-3. PubMed ID: 10646610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral tuning by selective chromophore uptake in rods and cones of eight populations of nine-spined stickleback (Pungitius pungitius).
    Saarinen P; Pahlberg J; Herczeg G; Viljanen M; Karjalainen M; Shikano T; Merilä J; Donner K
    J Exp Biol; 2012 Aug; 215(Pt 16):2760-73. PubMed ID: 22837448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral sensitivity of human cone photoreceptors.
    Schnapf JL; Kraft TW; Baylor DA
    Nature; 1987 Jan 29-Feb 4; 325(6103):439-41. PubMed ID: 3808045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The opossum photoreceptors--a model for evolutionary trends in early mammalian retina.
    Ahnelt PK; Hokoç JN; Röhlich P
    Rev Bras Biol; 1996 Dec; 56 Su 1 Pt 2():199-207. PubMed ID: 9394501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Contribution of cones to activation of the slow PIII-potential of the frog retina].
    Dmitriev AV; Skachkov SN; Bykov KA
    Neirofiziologiia; 1985; 17(1):115-8. PubMed ID: 3871918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.