BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 7810599)

  • 1. Role of redox systems on Fe3+ uptake by transformed human intestinal epithelial (Caco-2) cells.
    Núñez MT; Alvarez X; Smith M; Tapia V; Glass J
    Am J Physiol; 1994 Dec; 267(6 Pt 1):C1582-8. PubMed ID: 7810599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferrin stimulates iron absorption, exocytosis, and secretion in cultured intestinal cells.
    Nuñez MT; Tapia V
    Am J Physiol; 1999 May; 276(5):C1085-90. PubMed ID: 10329956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells.
    Kim EY; Ham SK; Bradke D; Ma Q; Han O
    J Nutr; 2011 May; 141(5):828-34. PubMed ID: 21430251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Fe absorption by cultured intestinal epithelia (Caco-2) cell monolayers with varied Fe status.
    Tapia V; Arredondo M; Núñez MT
    Am J Physiol; 1996 Sep; 271(3 Pt 1):G443-7. PubMed ID: 8843768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transepithelial transport of putrescine across monolayers of the human intestinal epithelial cell line, Caco-2.
    Milovic V; Turchanowa L; Stein J; Caspary WF
    World J Gastroenterol; 2001 Apr; 7(2):193-7. PubMed ID: 11819759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron status affects aluminum uptake and transport by Caco-2 cells.
    Alvarez-Hernandez X; Madigosky SR; Stewart B; Glass J
    J Nutr; 1994 Sep; 124(9):1574-80. PubMed ID: 8089724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers.
    Nøhr MK; Hansen SH; Brodin B; Holm R; Nielsen CU
    Eur J Pharm Sci; 2014 Jan; 51():1-10. PubMed ID: 24008184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model.
    Moriya M; Linder MC
    Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G301-9. PubMed ID: 16179601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caco-2 cell line: a system for studying intestinal iron transport across epithelial cell monolayers.
    Alvarez-Hernandez X; Nichols GM; Glass J
    Biochim Biophys Acta; 1991 Nov; 1070(1):205-8. PubMed ID: 1751528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe3+ opposes the 1,25(OH)2D3-induced calcium transport across intestinal epithelium-like Caco-2 monolayer in the presence or absence of ascorbic acid.
    Phummisutthigoon S; Lertsuwan K; Panupinthu N; Aeimlapa R; Teerapornpuntakit J; Chankamngoen W; Thongbunchoo J; Charoenphandhu N; Wongdee K
    PLoS One; 2022; 17(8):e0273267. PubMed ID: 36040915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for membrane transport of metformin in human intestinal epithelial Caco-2 cells.
    Horie A; Sakata J; Nishimura M; Ishida K; Taguchi M; Hashimoto Y
    Biopharm Drug Dispos; 2011 Jul; 32(5):253-60. PubMed ID: 21567399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2.
    Saito H; Inui K
    Am J Physiol; 1993 Aug; 265(2 Pt 1):G289-94. PubMed ID: 8396335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inositol phosphates inhibit uptake and transport of iron and zinc by a human intestinal cell line.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1994 Apr; 124(4):580-7. PubMed ID: 8145081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron absorption by CaCo 2 cells cultivated in serum-free medium as in vitro model of the human intestinal epithelial barrier.
    Halleux C; Schneider YJ
    J Cell Physiol; 1994 Jan; 158(1):17-28. PubMed ID: 8263023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells.
    Han O; Wessling-Resnick M
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G527-33. PubMed ID: 11842003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of pH and the iron redox state on iron uptake in the intestine of a marine teleost fish, gulf toadfish (Opsanus beta).
    Cooper CA; Bury NR; Grosell M
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Mar; 143(3):292-8. PubMed ID: 16431145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and kinetics of uptake and efflux of L-methionine in an intestinal epithelial model (Caco-2).
    Chen J; Zhu Y; Hu M
    J Nutr; 1994 Oct; 124(10):1907-16. PubMed ID: 7931699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transporter (SERT).
    Martel F; Monteiro R; Lemos C
    J Pharmacol Exp Ther; 2003 Jul; 306(1):355-62. PubMed ID: 12682218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepcidin inhibits apical iron uptake in intestinal cells.
    Mena NP; Esparza A; Tapia V; Valdés P; Núñez MT
    Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G192-8. PubMed ID: 17962361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.