BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 7810622)

  • 1. Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation.
    Bikle DD; Harris J; Halloran BP; Morey-Holton E
    Am J Physiol; 1994 Dec; 267(6 Pt 1):E822-7. PubMed ID: 7810622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats.
    Cavolina JM; Evans GL; Harris SA; Zhang M; Westerlind KC; Turner RT
    Endocrinology; 1997 Apr; 138(4):1567-76. PubMed ID: 9075717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular response of bone to growth hormone during skeletal unloading: regional differences.
    Bikle DD; Harris J; Halloran BP; Currier PA; Tanner S; Morey-Holton E
    Endocrinology; 1995 May; 136(5):2099-109. PubMed ID: 7720659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
    Morey-Holton ER; Globus RK
    Bone; 1998 May; 22(5 Suppl):83S-88S. PubMed ID: 9600759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histomorphometric, physical, and mechanical effects of spaceflight and insulin-like growth factor-I on rat long bones.
    Bateman TA; Zimmerman RJ; Ayers RA; Ferguson VL; Chapes SK; Simske SJ
    Bone; 1998 Dec; 23(6):527-35. PubMed ID: 9855461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight.
    Lalani R; Bhasin S; Byhower F; Tarnuzzer R; Grant M; Shen R; Asa S; Ezzat S; Gonzalez-Cadavid NF
    J Endocrinol; 2000 Dec; 167(3):417-28. PubMed ID: 11115768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression.
    Harris SA; Zhang M; Kidder LS; Evans GL; Spelsberg TC; Turner RT
    Bone; 2000 Apr; 26(4):325-31. PubMed ID: 10719274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal unloading induces biphasic changes in insulin-like growth factor-I mRNA levels and osteoblast activity.
    Drissi H; Lomri A; Lasmoles F; Holy X; Zerath E; Marie PJ
    Exp Cell Res; 1999 Sep; 251(2):275-84. PubMed ID: 10471313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal unloading induces resistance to insulin-like growth factor I.
    Bikle DD; Harris J; Halloran BP; Morey-Holton ER
    J Bone Miner Res; 1994 Nov; 9(11):1789-96. PubMed ID: 7532347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spaceflight results in reduced mRNA levels for tissue-specific proteins in the musculoskeletal system.
    Backup P; Westerlind K; Harris S; Spelsberg T; Kline B; Turner R
    Am J Physiol; 1994 Apr; 266(4 Pt 1):E567-73. PubMed ID: 8178977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of spaceflight and simulated weightlessness on longitudinal bone growth.
    Sibonga JD; Zhang M; Evans GL; Westerlind KC; Cavolina JM; Morey-Holton E; Turner RT
    Bone; 2000 Oct; 27(4):535-40. PubMed ID: 11033449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur.
    Evans GL; Morey-Holton E; Turner RT
    J Appl Physiol (1985); 1998 Jun; 84(6):2132-7. PubMed ID: 9609809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of skeletal unloading on bone formation: role of systemic and local factors.
    Bikle DD; Halloran BP; Morey-Holton E
    Acta Astronaut; 1994 Jul; 33():119-29. PubMed ID: 11539511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats.
    Tischler ME; Henriksen EJ; Munoz KA; Stump CS; Woodman CR; Kirby CR
    J Appl Physiol (1985); 1993 May; 74(5):2161-5. PubMed ID: 8335544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of spaceflight on murine skeletal muscle gene expression.
    Allen DL; Bandstra ER; Harrison BC; Thorng S; Stodieck LS; Kostenuik PJ; Morony S; Lacey DL; Hammond TG; Leinwand LL; Argraves WS; Bateman TA; Barth JL
    J Appl Physiol (1985); 2009 Feb; 106(2):582-95. PubMed ID: 19074574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spaceflight effects on cultured embryonic chick bone cells.
    Landis WJ; Hodgens KJ; Block D; Toma CD; Gerstenfeld LC
    J Bone Miner Res; 2000 Jun; 15(6):1099-112. PubMed ID: 10841178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alendronate administration and skeletal response during chronic alcohol intake in the adolescent male rat.
    Wezeman FH; Emanuele MA; Moskal SF; Steiner J; Lapaglia N
    J Bone Miner Res; 2000 Oct; 15(10):2033-41. PubMed ID: 11028458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histomorphometric analysis of rat skeleton following spaceflight.
    Wronski TJ; Morey-Holton ER; Doty SB; Maese AC; Walsh CC
    Am J Physiol; 1987 Feb; 252(2 Pt 2):R252-5. PubMed ID: 3812763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I.
    Cao JJ; Kurimoto P; Boudignon B; Rosen C; Lima F; Halloran BP
    J Bone Miner Res; 2007 Aug; 22(8):1271-9. PubMed ID: 17488198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spaceflight modulates insulin-like growth factor binding proteins and glucocorticoid receptor in osteoblasts.
    Kumei Y; Shimokawa H; Katano H; Akiyama H; Hirano M; Mukai C; Nagaoka S; Whitson PA; Sams CF
    J Appl Physiol (1985); 1998 Jul; 85(1):139-47. PubMed ID: 9655767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.