These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 7810679)

  • 1. Characterization of acetylcholinesterase in rabbit intrapulmonary arteries.
    Altiere RJ; Travis DC; Thompson DC
    Am J Physiol; 1994 Dec; 267(6 Pt 1):L745-52. PubMed ID: 7810679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholinesterase activity in human pulmonary arteries and veins.
    Walch L; Taisne C; Gascard JP; Nashashibi N; Brink C; Norel X
    Br J Pharmacol; 1997 Jul; 121(5):986-90. PubMed ID: 9222557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinesterase activity in human pulmonary arteries and veins: correlation with mRNA levels.
    Kotelevets L; Walch L; Chastre E; Chatonnet A; Dulmet E; Brink C; Norel X
    Life Sci; 2005 Mar; 76(19):2211-20. PubMed ID: 15733936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine-induced contractions in isolated rabbit pulmonary arteries: role of thromboxane A2.
    Altiere RJ; Kiritsy-Roy JA; Catravas JD
    J Pharmacol Exp Ther; 1986 Feb; 236(2):535-41. PubMed ID: 3080588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic control of human and animal pulmonary vascular tone.
    Walch L; Norel X; Leconte B; Gascard JP; Brink C
    Therapie; 1999; 54(1):99-102. PubMed ID: 10216432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic denervation of rat jejunum results in cholinergic supersensitivity due to reduction of cholinesterase activity.
    Osinski MA; Bass P
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1684-90. PubMed ID: 8371166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholinesterase activity in intact and homogenized skeletal muscle of the frog.
    Miledi R; Molenaar PC; Polak RL
    J Physiol; 1984 Apr; 349():663-86. PubMed ID: 6610744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in endothelium-dependent vasodilation and the influence of superoxide anions in perinatal rabbit pulmonary arteries.
    Morecroft I; MacLean MR
    Br J Pharmacol; 1998 Dec; 125(7):1585-93. PubMed ID: 9884088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effect of nitric oxide synthase inhibitors on acetylcholine-induced relaxation of rat pulmonary and celiac artery rings.
    Yaghi A; Paterson NA; McCormack DG
    Can J Physiol Pharmacol; 1997 Apr; 75(4):279-86. PubMed ID: 9196853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of endothelium-dependent relaxation in bovine intrapulmonary artery and vein by acetylcholine and A23187.
    Gruetter CA; Lemke SM
    J Pharmacol Exp Ther; 1986 Sep; 238(3):1055-62. PubMed ID: 3018218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cholinesterases in rat urinary bladder contractility.
    Nakahara T; Kubota Y; Sakamoto K; Ishii K
    Urol Res; 2003 Jul; 31(3):223-6. PubMed ID: 12736766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for specific regional patterns of responses to different vasoconstrictors and vasodilators in sheep isolated pulmonary arteries and veins.
    Kemp BK; Smolich JJ; Cocks TM
    Br J Pharmacol; 1997 Jun; 121(3):441-50. PubMed ID: 9179385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pertussis toxin inhibits contractions but not endothelium-dependent relaxations of rabbit pulmonary artery in response to acetylcholine and other agonists.
    Hohlfeld J; Liebau S; Förstermann U
    J Pharmacol Exp Ther; 1990 Jan; 252(1):260-4. PubMed ID: 2153802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostacyclin release and receptor activation: differential control of human pulmonary venous and arterial tone.
    Norel X; Walch L; Gascard JP; deMontpreville V; Brink C
    Br J Pharmacol; 2004 Jun; 142(4):788-96. PubMed ID: 15172959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide and endothelium-dependent constriction to flow in porcine small pulmonary arteries.
    Liu Q; Wiener CM; Flavahan NA
    Br J Pharmacol; 1998 May; 124(2):331-6. PubMed ID: 9641550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the epithelium in opposing H(2)O(2)-induced modulation of acetylcholine-induced contractions in rabbit intrapulmonary bronchiole.
    Asano T; Hattori T; Tada T; Kajikuri J; Kamiya T; Saitoh M; Yamada Y; Itoh M; Itoh T
    Br J Pharmacol; 2001 Mar; 132(6):1271-80. PubMed ID: 11250878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphodiesterase activity in intrapulmonary arteries and veins of perinatal lambs.
    Okogbule-Wonodi AC; Ibe BO; Yue BW; Hsu S; Raj JU
    Mol Genet Metab; 1998 Nov; 65(3):229-37. PubMed ID: 9851888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative enzymatic studies using ion-selective electrodes. The case of cholinesterases.
    Cuartero M; Pérez S; García MS; García-Cánovas F; Ortuño JA
    Talanta; 2018 Apr; 180():316-322. PubMed ID: 29332816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutaneous blood flow and sweat rate responses to exogenous administration of acetylcholine and methacholine.
    Kimura K; Low DA; Keller DM; Davis SL; Crandall CG
    J Appl Physiol (1985); 2007 May; 102(5):1856-61. PubMed ID: 17234802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional distribution of potassium currents in the rabbit pulmonary arterial circulation.
    McCulloch KM; Kempsill FE; Buchanan KJ; Gurney AM
    Exp Physiol; 2000 Sep; 85(5):487-96. PubMed ID: 11038399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.