BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7810685)

  • 1. Sites of superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle.
    Mohazzab KM; Wolin MS
    Am J Physiol; 1994 Dec; 267(6 Pt 1):L815-22. PubMed ID: 7810685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor.
    Mohazzab KM; Wolin MS
    Am J Physiol; 1994 Dec; 267(6 Pt 1):L823-31. PubMed ID: 7810686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium.
    Mohazzab KM; Kaminski PM; Wolin MS
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2568-72. PubMed ID: 8024019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase.
    Mohazzab-H KM; Kaminski PM; Wolin MS
    Circulation; 1997 Jul; 96(2):614-20. PubMed ID: 9244234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O2-dependent modulation of calf pulmonary artery tone by lactate: potential role of H2O2 and cGMP.
    Omar HA; Mohazzab KM; Mortelliti MP; Wolin MS
    Am J Physiol; 1993 Feb; 264(2 Pt 1):L141-5. PubMed ID: 8383445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron spin resonance characterization of the NAD(P)H oxidase in vascular smooth muscle cells.
    Sorescu D; Somers MJ; Lassègue B; Grant S; Harrison DG; Griendling KK
    Free Radic Biol Med; 2001 Mar; 30(6):603-12. PubMed ID: 11295358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential role of NADH oxidoreductase-derived reactive O2 species in calf pulmonary arterial PO2-elicited responses.
    Mohazzab KM; Fayngersh RP; Kaminski PM; Wolin MS
    Am J Physiol; 1995 Nov; 269(5 Pt 1):L637-44. PubMed ID: 7491983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems.
    Li Y; Zhu H; Kuppusamy P; Roubaud V; Zweier JL; Trush MA
    J Biol Chem; 1998 Jan; 273(4):2015-23. PubMed ID: 9442038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia increases superoxide anion production from bovine coronary microvessels, but not cardiac myocytes, via increased xanthine oxidase.
    Kaminski PM; Wolin MS
    Microcirculation; 1994 Dec; 1(4):231-6. PubMed ID: 8790592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-elicited responses in calf coronary arteries: role of H2O2 production via NADH-derived superoxide.
    Mohazzab-H KM; Kaminski PM; Fayngersh RP; Wolin MS
    Am J Physiol; 1996 Mar; 270(3 Pt 2):H1044-53. PubMed ID: 8780202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase.
    Storch J; Ferber E
    Anal Biochem; 1988 Mar; 169(2):262-7. PubMed ID: 2837920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysophosphatidylcholine enhances superoxide anions production via endothelial NADH/NADPH oxidase.
    Takeshita S; Inoue N; Gao D; Rikitake Y; Kawashima S; Tawa R; Sakurai H; Yokoyama M
    J Atheroscler Thromb; 2000; 7(4):238-46. PubMed ID: 11521688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase.
    Li JM; Shah AM
    Cardiovasc Res; 2001 Dec; 52(3):477-86. PubMed ID: 11738065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries.
    Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Burst production of superoxide anion in human endothelial cells by lysophosphatidylcholine.
    Kugiyama K; Sugiyama S; Ogata N; Oka H; Doi H; Ota Y; Yasue H
    Atherosclerosis; 1999 Mar; 143(1):201-4. PubMed ID: 10208496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen tolerance in neonatal rats: role of subcellular superoxide generation.
    Ischiropoulos H; Nadziejko CE; Kumae T; Kikkawa Y
    Am J Physiol; 1989 Dec; 257(6 Pt 1):L411-20. PubMed ID: 2558583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts.
    Janiszewski M; Souza HP; Liu X; Pedro MA; Zweier JL; Laurindo FR
    Free Radic Biol Med; 2002 Mar; 32(5):446-53. PubMed ID: 11864784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lucigenin as a substrate of microsomal NAD(P)H-oxidoreductases.
    Schepetkin IA
    Biochemistry (Mosc); 1999 Jan; 64(1):25-32. PubMed ID: 9986909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
    Griendling KK; Minieri CA; Ollerenshaw JD; Alexander RW
    Circ Res; 1994 Jun; 74(6):1141-8. PubMed ID: 8187280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An NADPH oxidase superoxide-generating system in the rabbit aorta.
    Pagano PJ; Ito Y; Tornheim K; Gallop PM; Tauber AI; Cohen RA
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2274-80. PubMed ID: 7611477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.