These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 7810685)
1. Sites of superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle. Mohazzab KM; Wolin MS Am J Physiol; 1994 Dec; 267(6 Pt 1):L815-22. PubMed ID: 7810685 [TBL] [Abstract][Full Text] [Related]
2. Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor. Mohazzab KM; Wolin MS Am J Physiol; 1994 Dec; 267(6 Pt 1):L823-31. PubMed ID: 7810686 [TBL] [Abstract][Full Text] [Related]
3. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Mohazzab KM; Kaminski PM; Wolin MS Am J Physiol; 1994 Jun; 266(6 Pt 2):H2568-72. PubMed ID: 8024019 [TBL] [Abstract][Full Text] [Related]
4. Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase. Mohazzab-H KM; Kaminski PM; Wolin MS Circulation; 1997 Jul; 96(2):614-20. PubMed ID: 9244234 [TBL] [Abstract][Full Text] [Related]
5. O2-dependent modulation of calf pulmonary artery tone by lactate: potential role of H2O2 and cGMP. Omar HA; Mohazzab KM; Mortelliti MP; Wolin MS Am J Physiol; 1993 Feb; 264(2 Pt 1):L141-5. PubMed ID: 8383445 [TBL] [Abstract][Full Text] [Related]
6. Electron spin resonance characterization of the NAD(P)H oxidase in vascular smooth muscle cells. Sorescu D; Somers MJ; Lassègue B; Grant S; Harrison DG; Griendling KK Free Radic Biol Med; 2001 Mar; 30(6):603-12. PubMed ID: 11295358 [TBL] [Abstract][Full Text] [Related]
7. Potential role of NADH oxidoreductase-derived reactive O2 species in calf pulmonary arterial PO2-elicited responses. Mohazzab KM; Fayngersh RP; Kaminski PM; Wolin MS Am J Physiol; 1995 Nov; 269(5 Pt 1):L637-44. PubMed ID: 7491983 [TBL] [Abstract][Full Text] [Related]
8. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. Li Y; Zhu H; Kuppusamy P; Roubaud V; Zweier JL; Trush MA J Biol Chem; 1998 Jan; 273(4):2015-23. PubMed ID: 9442038 [TBL] [Abstract][Full Text] [Related]
9. Hypoxia increases superoxide anion production from bovine coronary microvessels, but not cardiac myocytes, via increased xanthine oxidase. Kaminski PM; Wolin MS Microcirculation; 1994 Dec; 1(4):231-6. PubMed ID: 8790592 [TBL] [Abstract][Full Text] [Related]
10. Oxygen-elicited responses in calf coronary arteries: role of H2O2 production via NADH-derived superoxide. Mohazzab-H KM; Kaminski PM; Fayngersh RP; Wolin MS Am J Physiol; 1996 Mar; 270(3 Pt 2):H1044-53. PubMed ID: 8780202 [TBL] [Abstract][Full Text] [Related]
11. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Storch J; Ferber E Anal Biochem; 1988 Mar; 169(2):262-7. PubMed ID: 2837920 [TBL] [Abstract][Full Text] [Related]
13. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase. Li JM; Shah AM Cardiovasc Res; 2001 Dec; 52(3):477-86. PubMed ID: 11738065 [TBL] [Abstract][Full Text] [Related]
14. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries. Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489 [TBL] [Abstract][Full Text] [Related]
15. Burst production of superoxide anion in human endothelial cells by lysophosphatidylcholine. Kugiyama K; Sugiyama S; Ogata N; Oka H; Doi H; Ota Y; Yasue H Atherosclerosis; 1999 Mar; 143(1):201-4. PubMed ID: 10208496 [TBL] [Abstract][Full Text] [Related]
16. Oxygen tolerance in neonatal rats: role of subcellular superoxide generation. Ischiropoulos H; Nadziejko CE; Kumae T; Kikkawa Y Am J Physiol; 1989 Dec; 257(6 Pt 1):L411-20. PubMed ID: 2558583 [TBL] [Abstract][Full Text] [Related]
17. Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts. Janiszewski M; Souza HP; Liu X; Pedro MA; Zweier JL; Laurindo FR Free Radic Biol Med; 2002 Mar; 32(5):446-53. PubMed ID: 11864784 [TBL] [Abstract][Full Text] [Related]
18. Lucigenin as a substrate of microsomal NAD(P)H-oxidoreductases. Schepetkin IA Biochemistry (Mosc); 1999 Jan; 64(1):25-32. PubMed ID: 9986909 [TBL] [Abstract][Full Text] [Related]
19. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Griendling KK; Minieri CA; Ollerenshaw JD; Alexander RW Circ Res; 1994 Jun; 74(6):1141-8. PubMed ID: 8187280 [TBL] [Abstract][Full Text] [Related]
20. An NADPH oxidase superoxide-generating system in the rabbit aorta. Pagano PJ; Ito Y; Tornheim K; Gallop PM; Tauber AI; Cohen RA Am J Physiol; 1995 Jun; 268(6 Pt 2):H2274-80. PubMed ID: 7611477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]