These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7810685)

  • 101. A high-throughput microtiter plate assay for superoxide dismutase based on lucigenin chemiluminescence.
    Lenaerts I; Braeckman BP; Matthijssens F; Vanfleteren JR
    Anal Biochem; 2002 Dec; 311(1):90-2. PubMed ID: 12441159
    [No Abstract]   [Full Text] [Related]  

  • 102. Quantitative analysis of superoxide anion generation in living cells by using chemiluminescence video microscopy.
    Suzaki E; Kawai E; Kodama Y; Suzaki T; Masujima T
    Biochim Biophys Acta; 1994 Nov; 1201(2):328-32. PubMed ID: 7947949
    [TBL] [Abstract][Full Text] [Related]  

  • 103. A new mapping study of superoxide free radicals, vascular permeability and energy metabolism in central nervous system.
    Hayashi N; Tsubokawa T; Green BA; Watson BD; Prado R
    Acta Neurochir Suppl (Wien); 1990; 51():31-3. PubMed ID: 1965272
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells.
    Ghanian Z; Konduri GG; Audi SH; Camara AKS; Ranji M
    J Innov Opt Health Sci; 2018; 11(1):. PubMed ID: 30123329
    [TBL] [Abstract][Full Text] [Related]  

  • 105. A simple, sensitive, non-stimulated photon counting system for detection of superoxide anion in whole blood.
    Lu FJ; Lin JT; Wang HP; Huang WC
    Experientia; 1996 Feb; 52(2):141-4. PubMed ID: 8608815
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Superoxide anion scavenging activity of alk(en)yl phenol compounds by using PMS-NADH system.
    Masuoka N; Tamsampaoloet K; Chavasiri W; Kubo I
    Heliyon; 2016 Sep; 2(9):e00169. PubMed ID: 27747304
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Characterisation and evaluation of the use of membrane mimetic agents to amplify chemiluminescence from the lucigenin-hydrogen peroxide reaction system.
    Riehl TE; Malehorn CL; Hinze WL
    Analyst; 1986 Aug; 111(8):931-9. PubMed ID: 3766983
    [No Abstract]   [Full Text] [Related]  

  • 108. Glucose-6-phosphate dehydrogenase increases Ca
    Gupte R; Dhagia V; Rocic P; Ochi R; Gupte SA
    Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H144-H158. PubMed ID: 32442021
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Microvascular NADPH oxidase in health and disease.
    Li Y; Pagano PJ
    Free Radic Biol Med; 2017 Aug; 109():33-47. PubMed ID: 28274817
    [TBL] [Abstract][Full Text] [Related]  

  • 110. The role of Nox-mediated oxidation in the regulation of cytoskeletal dynamics.
    Valdivia A; Duran C; San Martin A
    Curr Pharm Des; 2015; 21(41):6009-22. PubMed ID: 26510432
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Nox4-dependent activation of cofilin mediates VSMC reorientation in response to cyclic stretching.
    Montenegro MF; Valdivia A; Smolensky A; Verma K; Taylor WR; San Martín A
    Free Radic Biol Med; 2015 Aug; 85():288-94. PubMed ID: 25998423
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia.
    Familtseva A; Kalani A; Chaturvedi P; Tyagi N; Metreveli N; Tyagi SC
    Physiol Rep; 2014; 2(4):e00283. PubMed ID: 24771691
    [TBL] [Abstract][Full Text] [Related]  

  • 113. NADPH oxidase NOX4 supports renal tumorigenesis by promoting the expression and nuclear accumulation of HIF2α.
    Gregg JL; Turner RM; Chang G; Joshi D; Zhan Y; Chen L; Maranchie JK
    Cancer Res; 2014 Jul; 74(13):3501-3511. PubMed ID: 24755467
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Coronary artery spasm related to thiol oxidation and senescence marker protein-30 in aging.
    Yamada S; Saitoh S; Machii H; Mizukami H; Hoshino Y; Misaka T; Ishigami A; Takeishi Y
    Antioxid Redox Signal; 2013 Oct; 19(10):1063-73. PubMed ID: 23320823
    [TBL] [Abstract][Full Text] [Related]  

  • 115. NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone.
    Frazziano G; Champion HC; Pagano PJ
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(11):H2166-77. PubMed ID: 22427511
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Reactive oxygen and nitrogen species in pulmonary hypertension.
    Tabima DM; Frizzell S; Gladwin MT
    Free Radic Biol Med; 2012 May; 52(9):1970-86. PubMed ID: 22401856
    [TBL] [Abstract][Full Text] [Related]  

  • 117. High-sugar intake does not exacerbate metabolic abnormalities or cardiac dysfunction in genetic cardiomyopathy.
    Hecker PA; Galvao TF; O'Shea KM; Brown BH; Henderson R; Riggle H; Gupte SA; Stanley WC
    Nutrition; 2012 May; 28(5):520-6. PubMed ID: 22304857
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Hypoxic pulmonary vasoconstriction.
    Sylvester JT; Shimoda LA; Aaronson PI; Ward JP
    Physiol Rev; 2012 Jan; 92(1):367-520. PubMed ID: 22298659
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Contribution of oxidative stress to pulmonary arterial hypertension.
    Demarco VG; Whaley-Connell AT; Sowers JR; Habibi J; Dellsperger KC
    World J Cardiol; 2010 Oct; 2(10):316-24. PubMed ID: 21160609
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia.
    Shimoda LA; Undem C
    Respir Physiol Neurobiol; 2010 Dec; 174(3):221-9. PubMed ID: 20801238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.