BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7810874)

  • 41. Specificity in the hydrolysis of N-acyl-L-phenylalanine 4-nitroanilides by chymotrypsin.
    Jakubke HD; Däumer H; Könnecke A; Kuhl P; Fischer J
    Experientia; 1980 Sep; 36(9):1039-40. PubMed ID: 7191374
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An alternative mechanism of bioluminescence color determination in firefly luciferase.
    Branchini BR; Southworth TL; Murtiashaw MH; Magyar RA; Gonzalez SA; Ruggiero MC; Stroh JG
    Biochemistry; 2004 Jun; 43(23):7255-62. PubMed ID: 15182171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Designing of substrates and inhibitors of bovine alpha-chymotrypsin with synthetic phenylalanine analogues in position P(1).
    Wysocka M; Lesner A; Legowska A; Jaśkiewicz A; Miecznikowska H; Rolka K
    Protein Pept Lett; 2008; 15(3):260-4. PubMed ID: 18336354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for hemiacetal formation between N-acyl-L-phenylalaninals and alpha-chymotrypsin by cross-saturation nuclear magnetic resonance spectroscopy.
    Chen R; Gorenstein DG; Kennedy WP; Lowe G; Nurse D; Schultz RM
    Biochemistry; 1979 Mar; 18(5):921-6. PubMed ID: 420824
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrolysis of phenylthiazolones of p-guanidinophenylalanine and arginine by trypsin and related enzymes.
    Tsunematsu H; Hatanaka Y; Sugahara Y; Makisumi S
    J Biochem; 1983 Oct; 94(4):1119-25. PubMed ID: 6361008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Validation and application of caged Z-DEVD-aminoluciferin bioluminescence for assessment of apoptosis of wild type and TLR2-deficient mice after ischemic stroke.
    Josić Dominović P; Dobrivojević Radmilović M; Srakočić S; Mišerić I; Škokić S; Gajović S
    J Photochem Photobiol B; 2024 Apr; 253():112871. PubMed ID: 38402658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specificity assay of serine proteinases by reverse-phase high-performance liquid chromatography analysis of competing oligopeptide substrate library.
    Antal J; Pál G; Asbóth B; Buzás Z; Patthy A; Gráf L
    Anal Biochem; 2001 Jan; 288(2):156-67. PubMed ID: 11152586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and bioluminescence of difluoroluciferin.
    Pirrung MC; Biswas G; De Howitt N; Liao J
    Bioorg Med Chem Lett; 2014 Oct; 24(20):4881-3. PubMed ID: 25239851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and characterization of poly(l-phenylalanine) chiral stationary phases with varying peptide length.
    Ohyama K; Oyamada K; Kishikawa N; Ohba Y; Wada M; Maki T; Nakashima K; Kuroda N
    J Chromatogr A; 2008 Oct; 1208(1-2):242-5. PubMed ID: 18817916
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The thioesterase I of Escherichia coli has arylesterase activity and shows stereospecificity for protease substrates.
    Lee YL; Chen JC; Shaw JF
    Biochem Biophys Res Commun; 1997 Feb; 231(2):452-6. PubMed ID: 9070299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-immolative bioluminogenic quinone luciferins for NAD(P)H assays and reducing capacity-based cell viability assays.
    Zhou W; Leippe D; Duellman S; Sobol M; Vidugiriene J; O'Brien M; Shultz JW; Kimball JJ; DiBernardo C; Moothart L; Bernad L; Cali J; Klaubert DH; Meisenheimer P
    Chembiochem; 2014 Mar; 15(5):670-5. PubMed ID: 24591148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The synthesis and characterisation of a glyoxal inhibitor of chymotrypsin.
    Murphy EA; O'Connell TP; Malthouse JP
    Biochem Soc Trans; 1996 Feb; 24(1):129S. PubMed ID: 8674615
    [No Abstract]   [Full Text] [Related]  

  • 53. Application of 2D-fluorescence spectroscopy for on-line monitoring of pseudoenantiomeric transformations in supercritical carbon dioxide systems.
    Knüttel T; Meyer H; Scheper T
    Anal Chem; 2005 Oct; 77(19):6184-9. PubMed ID: 16194077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A simple method to determine trypsin and chymotrypsin inhibitory activity.
    Yakoby N; Raskin I
    J Biochem Biophys Methods; 2004 Jun; 59(3):241-51. PubMed ID: 15165755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A continuous coupled spectrophotometric assay for tyrosine aminotransferase activity with aromatic and other nonpolar amino acids.
    Luong TN; Kirsch JF
    Anal Biochem; 1997 Nov; 253(1):46-9. PubMed ID: 9356140
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Principle of free energies linearity in chymotrypsin catalysis].
    Kozlov LV
    Biokhimiia; 1979 Jan; 44(1):166-71. PubMed ID: 33727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interactions of alpha-chymotrypsin and Carlsberg subtilisin with methyl N alpha-acetyl-2-(alkylthio)-L-tryptophanoates.
    Yoshizumi K; Kamiyama K; Shieh TC; Tanaka S; Ohno M
    J Biochem; 1986 Nov; 100(5):1201-6. PubMed ID: 3546277
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 1,4-Dihydro-l-phenylalanine-its synthesis and behavior in the phenylalanine ammonia-lyase reaction.
    Skolaut A; Rétey J
    Arch Biochem Biophys; 2001 Sep; 393(2):187-91. PubMed ID: 11556804
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis, self-assembling properties, and atom transfer radical polymerization of an alkylated L-phenylalanine-derived monomeric organogel from silica: a new approach to prepare packing materials for high-performance liquid chromatography.
    Rahman MM; Czaun M; Takafuji M; Ihara H
    Chemistry; 2008; 14(4):1312-21. PubMed ID: 18033705
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymatic reactions in microfluidic devices: Michaelis-Menten kinetics.
    Ristenpart WD; Wan J; Stone HA
    Anal Chem; 2008 May; 80(9):3270-6. PubMed ID: 18355085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.