BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 7811251)

  • 1. Triplex formation at physiological pH by oligonucleotides incorporating 5-Me-dC-(N4-spermine).
    Barawkar DA; Kumar VA; Ganesh KN
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1665-70. PubMed ID: 7811251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplex formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleotides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities.
    Barawkar DA; Rajeev KG; Kumar VA; Ganesh KN
    Nucleic Acids Res; 1996 Apr; 24(7):1229-37. PubMed ID: 8614624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplex formation at physiological pH: comparative studies on DNA triplexes containing 5-Me-dC tethered at N4 with spermine and tetraethyleneoxyamine.
    Rajeev KG; Jadhav VR; Ganesh KN
    Nucleic Acids Res; 1997 Nov; 25(21):4187-93. PubMed ID: 9336445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA triplex formed by d-A-(G-A)7-G and d-mC-(T-mC)7-T in aqueous solution at neutral pH.
    Lin SB; Kao CF; Lee SC; Kan LS
    Anticancer Drug Des; 1994 Feb; 9(1):1-8. PubMed ID: 8141963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inability of RNA to form the i-motif: implications for triplex formation.
    Lacroix L; Mergny JL; Leroy JL; Hélène C
    Biochemistry; 1996 Jul; 35(26):8715-22. PubMed ID: 8679634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of triplex forming oligodeoxynucleotides incorporating abasic sites by 5-arylcytosine residues in duplex DNAs.
    Mizuta M; Banba J; Kanamori T; Ohkubo A; Sekine M; Seio K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):25-6. PubMed ID: 18029568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stability of triplex DNA is affected by the stability of the underlying duplex.
    Rusling DA; Rachwal PA; Brown T; Fox KR
    Biophys Chem; 2009 Dec; 145(2-3):105-10. PubMed ID: 19819611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies.
    Kandimalla ER; Agrawal S
    Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of pyrimidine TFOs: effect on i-motif and triple helix formation.
    Lacroix L; Mergny JL
    Arch Biochem Biophys; 2000 Sep; 381(1):153-63. PubMed ID: 11019831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of the intermolecular DNA triplexes of C+.GC and T.AT triplets by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.
    Wan C; Guo X; Liu Z; Liu S
    J Mass Spectrom; 2008 Feb; 43(2):164-72. PubMed ID: 17828803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl.
    Gamper HB; Kutyavin IV; Rhinehart RL; Lokhov SG; Reed MW; Meyer RB
    Biochemistry; 1997 Dec; 36(48):14816-26. PubMed ID: 9398203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of silver ion with CG.C+ base triplets in DNA triplex.
    Ihara T; Ishii T; Jyo A
    Nucleic Acids Symp Ser (Oxf); 2009; (53):19-20. PubMed ID: 19749239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of a stable triplex from a single DNA strand.
    Sklenár V; Feigon J
    Nature; 1990 Jun; 345(6278):836-8. PubMed ID: 2359461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of DNA triple helix containing N(4)-(6-aminopyridin-2-yl)-2'-deoxycytidine.
    Chin TM; Tseng MH; Chung KY; Hung FS; Lin SB; Kan LS
    J Biomol Struct Dyn; 2001 Dec; 19(3):543-53. PubMed ID: 11790152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (A,G)-oligonucleotides form extraordinary stable triple helices with a critical R.Y sequence of the murine c-Ki-ras promoter and inhibit transcription in transfected NIH 3T3 cells.
    Alunni-Fabbroni M; Pirulli D; Manzini G; Xodo LE
    Biochemistry; 1996 Dec; 35(50):16361-9. PubMed ID: 8973212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine-linked oligonucleotides for DNA triple helix formation.
    Tung CH; Breslauer KJ; Stein S
    Nucleic Acids Res; 1993 Nov; 21(23):5489-94. PubMed ID: 8265366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Musso M; Van Dyke MW
    Nucleic Acids Res; 1995 Jun; 23(12):2320-7. PubMed ID: 7610062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.