These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7811701)

  • 1. Residues important for folding and dimerisation of recombinant Torpedo californica acetylcholinesterase.
    Bucht G; Häggström B; Radić Z; Osterman A; Hjalmarsson K
    Biochim Biophys Acta; 1994 Dec; 1209(2):265-73. PubMed ID: 7811701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding.
    Shafferman A; Kronman C; Flashner Y; Leitner M; Grosfeld H; Ordentlich A; Gozes Y; Cohen S; Ariel N; Barak D
    J Biol Chem; 1992 Sep; 267(25):17640-8. PubMed ID: 1517212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of Torpedo californica acetylcholinesterase by reversible inhibitors.
    Weiner L; Shnyrov VL; Konstantinovskii L; Roth E; Ashani Y; Silman I
    Biochemistry; 2009 Jan; 48(3):563-74. PubMed ID: 19115961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residues in Torpedo californica acetylcholinesterase necessary for processing to a glycosyl phosphatidylinositol-anchored form.
    Bucht G; Hjalmarsson K
    Biochim Biophys Acta; 1996 Feb; 1292(2):223-32. PubMed ID: 8597567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of active-site-related residues in Torpedo acetylcholinesterase. Presence of a glutamic acid in the catalytic triad.
    Duval N; Bon S; Silman I; Sussman J; Massoulié J
    FEBS Lett; 1992 Sep; 309(3):421-3. PubMed ID: 1355448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mutations within the peripheral anionic site on the stability of acetylcholinesterase.
    Morel N; Bon S; Greenblatt HM; Van Belle D; Wodak SJ; Sussman JL; Massoulié J; Silman I
    Mol Pharmacol; 1999 Jun; 55(6):982-92. PubMed ID: 10347238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.
    Kryger G; Harel M; Giles K; Toker L; Velan B; Lazar A; Kronman C; Barak D; Ariel N; Shafferman A; Silman I; Sussman JL
    Acta Crystallogr D Biol Crystallogr; 2000 Nov; 56(Pt 11):1385-94. PubMed ID: 11053835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance.
    Walsh SB; Dolden TA; Moores GD; Kristensen M; Lewis T; Devonshire AL; Williamson MS
    Biochem J; 2001 Oct; 359(Pt 1):175-81. PubMed ID: 11563981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of Torpedo acetylcholinesterase by disulfides: appearance of a "molten globule" state.
    Dolginova EA; Roth E; Silman I; Weiner LM
    Biochemistry; 1992 Dec; 31(48):12248-54. PubMed ID: 1333796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant human acetylcholinesterase expressed in Escherichia coli: refolding, purification and characterization.
    Fischer M; Ittah A; Gorecki M; Werber MM
    Biotechnol Appl Biochem; 1995 Jun; 21(3):295-311. PubMed ID: 7794533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of recombinant acetylcholinesterase in a baculovirus system: kinetic properties of glutamate 199 mutants.
    Radić Z; Gibney G; Kawamoto S; MacPhee-Quigley K; Bongiorno C; Taylor P
    Biochemistry; 1992 Oct; 31(40):9760-7. PubMed ID: 1356436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of a complex of acetylcholinesterase with a bis-(-)-nor-meptazinol derivative reveals disruption of the catalytic triad.
    Paz A; Xie Q; Greenblatt HM; Fu W; Tang Y; Silman I; Qiu Z; Sussman JL
    J Med Chem; 2009 Apr; 52(8):2543-9. PubMed ID: 19326912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of acetylcholinesterase with the G4 domain of the laminin alpha1-chain.
    Johnson G; Swart C; Moore SW
    Biochem J; 2008 May; 411(3):507-14. PubMed ID: 18215127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutants designed to test back-door hypotheses of acetylcholinesterase function.
    Faerman C; Ripoll D; Bon S; Le Feuvre Y; Morel N; Massoulié J; Sussman JL; Silman I
    FEBS Lett; 1996 May; 386(1):65-71. PubMed ID: 8635606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein.
    Sussman JL; Harel M; Frolow F; Oefner C; Goldman A; Toker L; Silman I
    Science; 1991 Aug; 253(5022):872-9. PubMed ID: 1678899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A "molten globule" of Torpedo acetylcholinesterase undergoes thiol-disulfide exchange.
    Eichler J; Kreimer DI; Varon L; Silman I; Weiner L
    J Biol Chem; 1994 Dec; 269(48):30093-6. PubMed ID: 7982909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyproline-rich peptides associated with Torpedo californica acetylcholinesterase tetramers.
    Toker L; Silman I; Zeev-Ben-Mordehai T; Sussman JL; Schopfer LM; Lockridge O
    Chem Biol Interact; 2020 Mar; 319():109007. PubMed ID: 32087110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase.
    Siadat OR; Lougarre A; Lamouroux L; Ladurantie C; Fournier D
    BMC Biochem; 2006 Apr; 7():12. PubMed ID: 16686937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of salt-soluble forms of acetylcholinesterase from bovine brain.
    Liao J; Boschetti N; Mortensen V; Jensen SP; Koch C; Nørgaard-Pedersen B; Brodbeck U
    J Neurochem; 1994 Oct; 63(4):1446-53. PubMed ID: 7931296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.