These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 7811812)

  • 1. Time course of recovery from adaptation by hydroxyproline-sensitive lobster olfactory receptor neurons.
    Gomez G; Atema J
    Biol Bull; 1994 Oct; 187(2):259-60. PubMed ID: 7811812
    [No Abstract]   [Full Text] [Related]  

  • 2. Across-fiber patterns may contain a sensory code for stimulus intensity.
    Johnson BR; Voigt R; Merrill CL; Atema J
    Brain Res Bull; 1991 Mar; 26(3):327-31. PubMed ID: 2049598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal resolution in olfaction II: time course of recovery from adaptation in lobster chemoreceptor cells.
    Gomez G; Atema J
    J Neurophysiol; 1996 Aug; 76(2):1340-3. PubMed ID: 8871240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two novel types of L-glutamate receptors with affinities for NMDA and L-cysteine in the olfactory organ of the Caribbean spiny lobster Panulirus argus.
    Burgess MF; Derby CD
    Brain Res; 1997 Oct; 771(2):292-304. PubMed ID: 9401750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A taurine receptor model: taurine-sensitive olfactory cells in the lobster.
    Gleeson RA; Trapido-Rosenthal HG; Carr WE
    Adv Exp Med Biol; 1987; 217():253-63. PubMed ID: 2829512
    [No Abstract]   [Full Text] [Related]  

  • 6. Lobster sniffing: antennule design and hydrodynamic filtering of information in an odor plume.
    Koehl MA; Koseff JR; Crimaldi JP; McCay MG; Cooper T; Wiley MB; Moore PA
    Science; 2001 Nov; 294(5548):1948-51. PubMed ID: 11729325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of olfactory information at three neuronal levels in the spiny lobster.
    Derby CD; Hamilton KA; Ache BW
    Brain Res; 1984 May; 300(2):311-9. PubMed ID: 6145501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of oesophageal peristalsis in the lobster after chemical stimulation.
    Robertson RM; Laverack MS
    Nature; 1978 Jan; 271(5642):239-40. PubMed ID: 622162
    [No Abstract]   [Full Text] [Related]  

  • 9. Independent components of the neural population response for discrimination of quality and intensity of chemical stimuli.
    Girardot MN; Derby CD
    Brain Behav Evol; 1990; 35(3):129-45. PubMed ID: 2375972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning from spiny lobsters about chemosensory coding of mixtures.
    Derby CD
    Physiol Behav; 2000 Apr 1-15; 69(1-2):203-9. PubMed ID: 10854930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage- and current-clamp recordings of the receptor potential in olfactory receptor cells in situ.
    Anderson PA; Ache BW
    Brain Res; 1985 Jul; 338(2):273-80. PubMed ID: 4027597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple excitatory receptor types on individual olfactory neurons: implications for coding of mixtures in the spiny lobster.
    Cromarty SI; Derby CD
    J Comp Physiol A; 1997 May; 180(5):481-91. PubMed ID: 9163926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure and physiology of the hooded sensillum, a bimodal chemo-mechanosensillum of lobsters.
    Cate HS; Derby CD
    J Comp Neurol; 2002 Jan; 442(4):293-307. PubMed ID: 11793335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixture suppression in behavior: the antennular flick response in the spiny lobster towards binary odorant mixtures.
    Daniel PC; Derby CD
    Physiol Behav; 1991 Mar; 49(3):591-601. PubMed ID: 2062938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lobster Orientation in turbulent odor plumes: electrical recording of bilateral olfactory sampling (antennular "flicking").
    Leonard AE; Voigt R; Atema J
    Biol Bull; 1994 Oct; 187(2):273. PubMed ID: 7811822
    [No Abstract]   [Full Text] [Related]  

  • 16. Adaptation in chemoreceptor cells. I. Self-adapting backgrounds determine threshold and cause parallel shift of response function.
    Borroni PF; Atema J
    J Comp Physiol A; 1988 Nov; 164(1):67-74. PubMed ID: 3236262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselective detection of amino acids by lobster olfactory receptor neurons.
    Michel WC; Trapido-Rosenthal HG; Chao ET; Wachowiak M
    J Comp Physiol A; 1993 Jan; 171(6):705-12. PubMed ID: 8441120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of olfactory receptor cells of spiny lobsters to binary mixtures. I. Intensity mixture interactions.
    Derby CD; Girardot MN; Daniel PC
    J Neurophysiol; 1991 Jul; 66(1):112-30. PubMed ID: 1919661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The olfactory pathway for individual recognition in the American lobster Homarus americanus.
    Johnson ME; Atema J
    J Exp Biol; 2005 Aug; 208(Pt 15):2865-72. PubMed ID: 16043591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral mechanisms of olfactory discrimination of complex mixtures by the spiny lobster: no cell types for mixtures but different contributions of the cells to the across neuron patterns.
    Girardot MN; Derby CD
    Brain Res; 1990 Apr; 513(2):225-36. PubMed ID: 2350692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.