BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7811921)

  • 1. A conformation transition of lung surfactant lipids probably involved in respiration.
    Gulik A; Tchoreloff P; Proust J
    Biophys J; 1994 Sep; 67(3):1107-12. PubMed ID: 7811921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-crystalline collapse of pulmonary surfactant monolayers.
    Schief WR; Antia M; Discher BM; Hall SB; Vogel V
    Biophys J; 2003 Jun; 84(6):3792-806. PubMed ID: 12770885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural study of interfacial phospholipid and lung surfactant layers by transmission electron microscopy after Blodgett sampling: influence of surface pressure and temperature.
    Tchoreloff P; Gulik A; Denizot B; Proust JE; Puisieux F
    Chem Phys Lipids; 1991 Sep; 59(2):151-65. PubMed ID: 1742808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The melting of pulmonary surfactant monolayers.
    Yan W; Biswas SC; Laderas TG; Hall SB
    J Appl Physiol (1985); 2007 May; 102(5):1739-45. PubMed ID: 17194731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A freeze-fracture transmission electron microscopy and small angle x-ray diffraction study of the effects of albumin, serum, and polymers on clinical lung surfactant microstructure.
    Braun A; Stenger PC; Warriner HE; Zasadzinski JA; Lu KW; Taeusch HW
    Biophys J; 2007 Jul; 93(1):123-39. PubMed ID: 17416614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifying calf lung surfactant by hexadecanol.
    Alonso C; Bringezu F; Brezesinski G; Waring AJ; Zasadzinski JA
    Langmuir; 2005 Feb; 21(3):1028-35. PubMed ID: 15667185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does pulmonary surfactant reduce surface tension to very low values?
    Zuo YY; Possmayer F
    J Appl Physiol (1985); 2007 May; 102(5):1733-4. PubMed ID: 17303712
    [No Abstract]   [Full Text] [Related]  

  • 8. Surface biophysics of the surface monolayer theory is incompatible with regional lung function.
    Scarpelli EM; Mautone AJ
    Biophys J; 1994 Sep; 67(3):1080-9. PubMed ID: 7811918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air-water interface by an IRRAS measurement.
    Nakahara H; Dudek A; Nakamura Y; Lee S; Chang CH; Shibata O
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):61-7. PubMed ID: 18977123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cholesterol on the molecular structure and transitions in a clinical-grade lung surfactant extract.
    Andersson JM; Grey C; Larsson M; Ferreira TM; Sparr E
    Proc Natl Acad Sci U S A; 2017 May; 114(18):E3592-E3601. PubMed ID: 28416656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol modifies the properties of surface films of dipalmitoylphosphatidylcholine plus pulmonary surfactant-associated protein B or C spread or adsorbed at the air-water interface.
    Taneva S; Keough KM
    Biochemistry; 1997 Jan; 36(4):912-22. PubMed ID: 9020791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An X-ray diffraction study of alterations in bovine lung surfactant bilayer structures induced by albumin.
    Larsson M; Nylander T; Keough KM; Nag K
    Chem Phys Lipids; 2006; 144(2):137-45. PubMed ID: 17055468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bilayer melting transition in lung surfactant bilayers: the role of cholesterol.
    Larsson M; Larsson K; Nylander T; Wollmer P
    Eur Biophys J; 2003 Feb; 31(8):633-6. PubMed ID: 12582823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary surfactant protein SP-C causes packing rearrangements of dipalmitoylphosphatidylcholine in spread monolayers.
    PĂ©rez-Gil J; Nag K; Taneva S; Keough KM
    Biophys J; 1992 Jul; 63(1):197-204. PubMed ID: 1420867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylcholine molecular species in lung surfactant: composition in relation to respiratory rate and lung development.
    Bernhard W; Hoffmann S; Dombrowsky H; Rau GA; Kamlage A; Kappler M; Haitsma JJ; Freihorst J; von der Hardt H; Poets CF
    Am J Respir Cell Mol Biol; 2001 Dec; 25(6):725-31. PubMed ID: 11726398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with surfacten (Surfactant TA).
    Nakahara H; Lee S; Sugihara G; Chang CH; Shibata O
    Langmuir; 2008 Apr; 24(7):3370-9. PubMed ID: 18315015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced efficacy of porcine lung surfactant extract by utilization of its aqueous swelling dynamics.
    Larsson M; Haitsma JJ; Lachmann B; Larsson K; Nylander T; Wollmer P
    Clin Physiol Funct Imaging; 2002 Jan; 22(1):39-48. PubMed ID: 12003098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How thin can glass be? New ideas, new approaches.
    Keough K
    Biophys J; 2003 Nov; 85(5):2785-6. PubMed ID: 14581183
    [No Abstract]   [Full Text] [Related]  

  • 20. Lung surfactant dysfunction in tuberculosis: effect of mycobacterial tubercular lipids on dipalmitoylphosphatidylcholine surface activity.
    Chimote G; Banerjee R
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):215-23. PubMed ID: 16198543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.