BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 7811954)

  • 1. Actin-crosslinking protein regulation of filament movement in motility assays: a theoretical model.
    Janson LW; Taylor DL
    Biophys J; 1994 Sep; 67(3):973-82. PubMed ID: 7811954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin-binding proteins regulate the work performed by myosin II motors on single actin filaments.
    Janson LW; Sellers JR; Taylor DL
    Cell Motil Cytoskeleton; 1992; 22(4):274-80. PubMed ID: 1516149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap.
    Saito K; Aoki T; Aoki T; Yanagida T
    Biophys J; 1994 Mar; 66(3 Pt 1):769-77. PubMed ID: 8011909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.
    Winkelmann DA; Bourdieu L; Kinose F; Libchaber A
    Biophys J; 1995 Apr; 68(4 Suppl):72S. PubMed ID: 7787107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative actions between myosin heads bring effective functions.
    Esaki S; Ishii Y; Nishikawa M; Yanagida T
    Biosystems; 2007 Apr; 88(3):293-300. PubMed ID: 17187925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation of actin filaments during motion in in vitro motility assay.
    Borejdo J; Burlacu S
    Biophys J; 1994 May; 66(5):1319-27. PubMed ID: 8061187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are actin filaments moving under unloaded conditions in the in vitro motility assay?
    Haeberle JR; Hemric ME
    Biophys J; 1995 Apr; 68(4 Suppl):306S-310S; discussion 310S-311S. PubMed ID: 7787096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acting on actin: the electric motility assay.
    Riveline D; Ott A; Jülicher F; Winkelmann DA; Cardoso O; Lacapère JJ; Magnúsdóttir S; Viovy JL; Gorre-Talini L; Prost J
    Eur Biophys J; 1998; 27(4):403-8. PubMed ID: 9691469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity in F-actin: chemical modifications of actin monomers affect the functional interactions of myosin with unmodified monomers in the same actin filament.
    Prochniewicz E; Katayama E; Yanagida T; Thomas DD
    Biophys J; 1993 Jul; 65(1):113-23. PubMed ID: 8369420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces.
    Ishijima A; Kojima H; Higuchi H; Harada Y; Funatsu T; Yanagida T
    Biophys J; 1996 Jan; 70(1):383-400. PubMed ID: 8770215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic polymorphism of actin as activation mechanism for cell motility.
    Kozuka J; Yokota H; Arai Y; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):273-82. PubMed ID: 17184905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced force generation by smooth muscle myosin in vitro.
    VanBuren P; Work SS; Warshaw DM
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):202-5. PubMed ID: 8278365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physical model of ATP-induced actin-myosin movement in vitro.
    Tawada K; Sekimoto K
    Biophys J; 1991 Feb; 59(2):343-56. PubMed ID: 1826220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of actin away from the center of reconstituted rabbit myosin filament is slower than in the opposite direction.
    Yamada A; Wakabayashi T
    Biophys J; 1993 Feb; 64(2):565-9. PubMed ID: 8457681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay.
    Suzuki N; Miyata H; Ishiwata S; Kinosita K
    Biophys J; 1996 Jan; 70(1):401-8. PubMed ID: 8770216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of single actin-myosin interactions.
    Finer JT; Mehta AD; Spudich JA
    Biophys J; 1995 Apr; 68(4 Suppl):291S-296S; discussion 296S-297S. PubMed ID: 7787094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin subfragment-1 is sufficient to move actin filaments in vitro.
    Toyoshima YY; Kron SJ; McNally EM; Niebling KR; Toyoshima C; Spudich JA
    Nature; 1987 Aug 6-12; 328(6130):536-9. PubMed ID: 2956522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach to reconstituting motility of single myosin molecules.
    Kron SJ; Uyeda TQ; Warrick HM; Spudich JA
    J Cell Sci Suppl; 1991; 14():129-33. PubMed ID: 1885651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal activation energy for bidirectional movement of actin along bipolar tracks of myosin filaments.
    Okubo H; Iwai M; Iwai S; Chaen S
    Biochem Biophys Res Commun; 2010 May; 396(2):539-42. PubMed ID: 20435018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.