These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7812152)

  • 1. 113Cd-1H heteroTOCSY: a method for determining metal-protein connectivities.
    Gardner KH; Coleman JE
    J Biomol NMR; 1994 Nov; 4(6):761-74. PubMed ID: 7812152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HeteroTOCSY-based experiments for measuring heteronuclear relaxation in nucleic acids and proteins.
    Schweitzer BI; Gardner KH; Tucker-Kellogg G
    J Biomol NMR; 1995 Sep; 6(2):180-8. PubMed ID: 8589607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of 113Cd NMR to metallothioneins.
    Vasák M
    Biodegradation; 1998; 9(6):501-12. PubMed ID: 10335586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster.
    Pan T; Coleman JE
    Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2077-81. PubMed ID: 2107541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure elucidation of the metal-binding sites in metallothionein by 113Cd NMR.
    Armitage IM; Otvos JD; Briggs RW; Boulanger Y
    Fed Proc; 1982 Nov; 41(13):2974-80. PubMed ID: 7140998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center.
    Henehan CJ; Pountney DL; Zerbe O; Vasák M
    Protein Sci; 1993 Oct; 2(10):1756-64. PubMed ID: 8251947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 113CD-1H spin-spin couplings in homonuclear 1H correlated spectroscopy of metallothionein. Identification of the cysteine 1H spin systems.
    Neuhaus D; Wagner G; Vasák M; Kägi JH; Wüthrich K
    Eur J Biochem; 1984 Sep; 143(3):659-67. PubMed ID: 6090138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of the Kluyveromyces lactis LAC9 Cd2 Cys6 DNA-binding domain.
    Gardner KH; Anderson SF; Coleman JE
    Nat Struct Biol; 1995 Oct; 2(10):898-905. PubMed ID: 7552715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the binuclear metal-binding site in the GAL4 transcription factor.
    Gardner KH; Pan T; Narula S; Rivera E; Coleman JE
    Biochemistry; 1991 Nov; 30(47):11292-302. PubMed ID: 1958667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteronuclear 113Cd-1H NMR study of metal coordination in the human retinoic acid receptor-beta DNA binding domain.
    Knegtel RM; Boelens R; Ganadu ML; George AV; van der Saag PT; Kaptein R
    Biochem Biophys Res Commun; 1993 Apr; 192(2):492-8. PubMed ID: 8387280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypeptide-metal cluster connectivities in Cd(II) GAL4.
    Gadhavi PL; Davis AL; Povey JF; Keeler J; Laue ED
    FEBS Lett; 1991 Apr; 281(1-2):223-6. PubMed ID: 2015899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refined solution structure of the DNA-binding domain of GAL4 and use of 3J(113Cd,1H) in structure determination.
    Baleja JD; Thanabal V; Wagner G
    J Biomol NMR; 1997 Dec; 10(4):397-401. PubMed ID: 9460244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of metal centers in bioinorganic complexes using ab initio calculations of 113Cd chemical shifts.
    Kidambi SS; Ramamoorthy A
    Inorg Chem; 2003 Apr; 42(7):2200-2. PubMed ID: 12665351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two- and three-dimensional 31P-driven NMR procedures for complete assignment of backbone resonances in oligodeoxyribonucleotides.
    Kellogg GW; Schweitzer BI
    J Biomol NMR; 1993 Sep; 3(5):577-95. PubMed ID: 8219742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR determination of the global structure of the 113Cd derivative of desulforedoxin: investigation of the hydrogen bonding pattern at the metal center.
    Goodfellow BJ; Rusnak F; Moura I; Domke T; Moura JJ
    Protein Sci; 1998 Apr; 7(4):928-37. PubMed ID: 9568899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries.
    Li X; Suzuki K; Kanaori K; Tajima K; Kashiwada A; Hiroaki H; Kohda D; Tanaka T
    Protein Sci; 2000 Jul; 9(7):1327-33. PubMed ID: 10933497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy.
    Clore GM; Bax A; Driscoll PC; Wingfield PT; Gronenborn AM
    Biochemistry; 1990 Sep; 29(35):8172-84. PubMed ID: 2261471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing isostructural metal substitution in metalloproteins using 1H NMR, circular dichroism, and Fourier transform infrared spectroscopy.
    Pountney DL; Henehan CJ; Vasák M
    Protein Sci; 1995 Aug; 4(8):1571-6. PubMed ID: 8520483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast.
    Kofod P; Bauer R; Danielsen E; Larsen E; Bjerrum MJ
    Eur J Biochem; 1991 Jun; 198(3):607-11. PubMed ID: 2050141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 113Cd NMR spectroscopy.
    Omburo GA; Mullins LS; Raushel FM
    Biochemistry; 1993 Sep; 32(35):9148-55. PubMed ID: 8396425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.