These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7812442)

  • 1. Evolution of Fusarium graminearum A3/5 grown in a glucose-limited chemostat culture at a slow dilution rate.
    Wiebe MG; Robson GD; Oliver SG; Trinci AP
    Microbiology (Reading); 1994 Nov; 140 ( Pt 11)():3023-9. PubMed ID: 7812442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic selection in longterm continuous-flow cultures of the filamentous fungus Fusarium graminearum.
    Wiebe MG; Robson GD; Cunliffe B; Oliver SG; Trinci AP
    J Gen Microbiol; 1993 Nov; 139(11):2811-7. PubMed ID: 8277261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a series of chemostat cultures to isolate 'improved' variants of the Quorn mycoprotein fungus, Fusarium graminearum A3/5.
    Wiebe MG; Robson GD; Oliver SG; Trinci AP
    Microbiology (Reading); 1994 Nov; 140 ( Pt 11)():3015-21. PubMed ID: 7812441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH oscillations and constant low pH delay the appearance of highly branched (colonial) mutants in chemostat cultures of the quorn(R) myco-protein fungus, Fusarium graminearum A3/5.
    Wiebe MG; Robson GD; Oliver SG; Trinci AP
    Biotechnol Bioeng; 1996 Jul; 51(1):61-8. PubMed ID: 18627088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of a recombinant (gucoamylase-producing) strain of Fusarium venenatum A3/5 in chemostat culture.
    Wiebe MG; Robson GD; Shuster J; Trinci AP
    Biotechnol Bioeng; 2001 Apr; 73(2):146-56. PubMed ID: 11255162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient-dependent selection of morphological mutants of Fusarium graminearum A3/5 isolated from long-term continuous flow cultures.
    Wiebe MG; Robson GD; Cunliffe B; Trinci AP; Oliver SG
    Biotechnol Bioeng; 1992 Dec; 40(10):1181-9. PubMed ID: 18601069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth-rate-independent production of recombinant glucoamylase by Fusarium venenatum JeRS 325.
    Wiebe MG; Robson GD; Shuster J; Trinci AP
    Biotechnol Bioeng; 2000 May; 68(3):245-51. PubMed ID: 10745192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture.
    Withers JM; Swift RJ; Wiebe MG; Robson GD; Punt PJ; van den Hondel CA; Trinci AP
    Biotechnol Bioeng; 1998 Aug; 59(4):407-18. PubMed ID: 10099354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics.
    Wick LM; Weilenmann H; Egli T
    Microbiology (Reading); 2002 Sep; 148(Pt 9):2889-2902. PubMed ID: 12213934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirements for the rapid conversion of macroconidia of Fusarium sulphureum to chlamydospores.
    Barran LR; Schneider EF; Seaman WL
    Can J Microbiol; 1977 Feb; 23(2):148-51. PubMed ID: 837252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilution rate as a determinant of mycelial morphology in continuous culture.
    Wiebe MG; Trinci AP
    Biotechnol Bioeng; 1991 Jun; 38(1):75-81. PubMed ID: 18600700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 1994 Marjory Stephenson Prize Lecture. Evolution of the Quorn myco-protein fungus, Fusarium graminearum A3/5.
    Trinci AP
    Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2181-8. PubMed ID: 7952168
    [No Abstract]   [Full Text] [Related]  

  • 13. The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat.
    Marsh PD; Hunter JR; Bowden GH; Hamilton IR; McKee AS; Hardie JM; Ellwood DC
    J Gen Microbiol; 1983 Mar; 129(3):755-70. PubMed ID: 6348208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphogenesis in germinating Fusarium graminearum macroconidia.
    Harris SD
    Mycologia; 2005; 97(4):880-7. PubMed ID: 16457357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between transport kinetics and glucose uptake by Saccharomyces cerevisiae in aerobic chemostat cultures.
    du Preez JC; de Kock SH; Kilian SG; Litthauer D
    Antonie Van Leeuwenhoek; 2000 May; 77(4):379-88. PubMed ID: 10959567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imidazolium salts with antifungal potential for the control of head blight of wheat caused by Fusarium graminearum.
    Ribas AD; Del Ponte EM; Dalbem AM; Dalla-Lana D; Bündchen C; Donato RK; Schrekker HS; Fuentefria AM
    J Appl Microbiol; 2016 Aug; 121(2):445-52. PubMed ID: 26972421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic study on JS399-19 resistance in hyphal fusion of Fusarium graminearum by using nitrate nonutilizing mutants as genetic markers.
    Chen Y; Chen C; Wang J; Jin L; Zhou M
    J Genet Genomics; 2007 May; 34(5):469-76. PubMed ID: 17560533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conidial germination in the filamentous fungus Fusarium graminearum.
    Seong KY; Zhao X; Xu JR; Güldener U; Kistler HC
    Fungal Genet Biol; 2008 Apr; 45(4):389-99. PubMed ID: 17950638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species.
    Chan YK; McCormick WA; Seifert KA
    Can J Microbiol; 2003 Apr; 49(4):253-62. PubMed ID: 12897834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological characterization of adaptive clones in evolving populations of the yeast, Saccharomyces cerevisiae.
    Adams J; Paquin C; Oeller PW; Lee LW
    Genetics; 1985 Jun; 110(2):173-85. PubMed ID: 3891508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.