BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 7813441)

  • 1. Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini.
    Juan LJ; Utley RT; Adams CC; Vettese-Dadey M; Workman JL
    EMBO J; 1994 Dec; 13(24):6031-40. PubMed ID: 7813441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro.
    Vettese-Dadey M; Grant PA; Hebbes TR; Crane- Robinson C; Allis CD; Workman JL
    EMBO J; 1996 May; 15(10):2508-18. PubMed ID: 8665858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores.
    Vettese-Dadey M; Walter P; Chen H; Juan LJ; Workman JL
    Mol Cell Biol; 1994 Feb; 14(2):970-81. PubMed ID: 8289837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H1-mediated repression of transcription factor binding to a stably positioned nucleosome.
    Juan LJ; Utley RT; Vignali M; Bohm L; Workman JL
    J Biol Chem; 1997 Feb; 272(6):3635-40. PubMed ID: 9013616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosome cores and histone H1 in the binding of GAL4 derivatives and the reactivation of transcription from nucleosome templates in vitro.
    Juan LJ; Walter PP; Taylor IC; Kingston RE; Workman JL
    Cold Spring Harb Symp Quant Biol; 1993; 58():213-23. PubMed ID: 7956032
    [No Abstract]   [Full Text] [Related]  

  • 6. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex.
    Workman JL; Kingston RE
    Science; 1992 Dec; 258(5089):1780-4. PubMed ID: 1465613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding.
    Mutskov V; Gerber D; Angelov D; Ausio J; Workman J; Dimitrov S
    Mol Cell Biol; 1998 Nov; 18(11):6293-304. PubMed ID: 9774646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative.
    Adams CC; Workman JL
    Mol Cell Biol; 1995 Mar; 15(3):1405-21. PubMed ID: 7862134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.
    Kermekchiev M; Workman JL; Pikaard CS
    Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of transcription factor binding and histone displacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer.
    Walter PP; Owen-Hughes TA; Côté J; Workman JL
    Mol Cell Biol; 1995 Nov; 15(11):6178-87. PubMed ID: 7565770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes.
    Logie C; Tse C; Hansen JC; Peterson CL
    Biochemistry; 1999 Feb; 38(8):2514-22. PubMed ID: 10029546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones.
    Owen-Hughes T; Workman JL
    EMBO J; 1996 Sep; 15(17):4702-12. PubMed ID: 8887561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.
    Bernier M; Luo Y; Nwokelo KC; Goodwin M; Dreher SJ; Zhang P; Parthun MR; Fondufe-Mittendorf Y; Ottesen JJ; Poirier MG
    Nat Commun; 2015 Dec; 6():10152. PubMed ID: 26648124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly.
    Chen H; Li B; Workman JL
    EMBO J; 1994 Jan; 13(2):380-90. PubMed ID: 8313883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast.
    Kastaniotis AJ; Mennella TA; Konrad C; Torres AM; Zitomer RS
    Mol Cell Biol; 2000 Oct; 20(19):7088-98. PubMed ID: 10982825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activator control of nucleosome occupancy in activation and repression of transcription.
    Bryant GO; Prabhu V; Floer M; Wang X; Spagna D; Schreiber D; Ptashne M
    PLoS Biol; 2008 Dec; 6(12):2928-39. PubMed ID: 19108605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes.
    Workman JL; Taylor IC; Kingston RE
    Cell; 1991 Feb; 64(3):533-44. PubMed ID: 1991320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression.
    Ura K; Kurumizaka H; Dimitrov S; Almouzni G; Wolffe AP
    EMBO J; 1997 Apr; 16(8):2096-107. PubMed ID: 9155035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex.
    Owen-Hughes T; Utley RT; Côté J; Peterson CL; Workman JL
    Science; 1996 Jul; 273(5274):513-6. PubMed ID: 8662543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression.
    Panetta G; Buttinelli M; Flaus A; Richmond TJ; Rhodes D
    J Mol Biol; 1998 Sep; 282(3):683-97. PubMed ID: 9737930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.