BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 7813649)

  • 1. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport.
    Lynch JC; Hoover JE; Strick PL
    Exp Brain Res; 1994; 100(1):181-6. PubMed ID: 7813649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1381-402. PubMed ID: 14573558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkey.
    Tian ; Lynch JC
    J Neurosci; 1997 Dec; 17(23):9233-47. PubMed ID: 9364070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontal eye field neurons orthodromically activated from the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 1998 Dec; 80(6):3331-5. PubMed ID: 9862927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Apr; 83(4):1979-2001. PubMed ID: 10758109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum.
    Clower DM; West RA; Lynch JC; Strick PL
    J Neurosci; 2001 Aug; 21(16):6283-91. PubMed ID: 11487651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the frontal eye field can impose a saccade goal on superior colliculus neurons.
    Schlag-Rey M; Schlag J; Dassonville P
    J Neurophysiol; 1992 Apr; 67(4):1003-5. PubMed ID: 1588383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Causal Role of Neural Signals Transmitted From the Frontal Eye Field to the Superior Colliculus in Saccade Generation.
    Matsumoto M; Inoue KI; Takada M
    Front Neural Circuits; 2018; 12():69. PubMed ID: 30210307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long collateral branches of substantia nigra pars reticulata axons to thalamus, superior colliculus and reticular formation in monkey and cat. Multiple retrograde neuronal labeling with fluorescent dyes.
    Beckstead RM
    Neuroscience; 1983 Nov; 10(3):767-79. PubMed ID: 6316201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys.
    Tian JR; Lynch JC
    J Neurophysiol; 1996 Oct; 76(4):2740-53. PubMed ID: 8899642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys.
    Tian JR; Lynch JC
    J Neurophysiol; 1996 Oct; 76(4):2754-71. PubMed ID: 8899643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements.
    Ferraina S; Paré M; Wurtz RH
    J Neurophysiol; 2002 Feb; 87(2):845-58. PubMed ID: 11826051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation-evoked saccades from the dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal eye fields and superior colliculus.
    Tehovnik EJ; Lee K; Schiller PH
    Exp Brain Res; 1994; 98(2):179-90. PubMed ID: 8050505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A direct projection from superior colliculus to substantia nigra pars compacta in the cat.
    McHaffie JG; Jiang H; May PJ; Coizet V; Overton PG; Stein BE; Redgrave P
    Neuroscience; 2006; 138(1):221-34. PubMed ID: 16361067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1403-23. PubMed ID: 14573557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of presaccadic activity in the frontal eye field by the superior colliculus.
    Berman RA; Joiner WM; Cavanaugh J; Wurtz RH
    J Neurophysiol; 2009 Jun; 101(6):2934-42. PubMed ID: 19321644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neurons of the substantia nigra and zona incerta which project to the cat superior colliculus are GABA immunoreactive: a double-label study using GABA immunocytochemistry and lectin retrograde transport.
    Ficalora AS; Mize RR
    Neuroscience; 1989; 29(3):567-81. PubMed ID: 2739902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographical organization of the nigrotectal projection in rat: evidence for segregated channels.
    Redgrave P; Marrow L; Dean P
    Neuroscience; 1992 Oct; 50(3):571-95. PubMed ID: 1279464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the frontal eye field and superior colliculus for saccade generation.
    Hanes DP; Wurtz RH
    J Neurophysiol; 2001 Feb; 85(2):804-15. PubMed ID: 11160514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.