BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 7814079)

  • 21. Mechanism by which an elevation of extracellular glucide concentration induces pigment aggregation in medaka melanophores.
    Fujii R; Goda M; Oshima N
    Microsc Res Tech; 2002 Sep; 58(6):514-22. PubMed ID: 12242709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoaffinity labelling of MSH receptors on Anolis melanophores: effects of catecholamines, calcium and forskolin.
    Eberle AN; Girard J
    J Recept Res; 1985; 5(1):59-81. PubMed ID: 2860247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging.
    Sammak PJ; Adams SR; Harootunian AT; Schliwa M; Tsien RY
    J Cell Biol; 1992 Apr; 117(1):57-72. PubMed ID: 1348251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mediation of cholino-piperine like receptors by extracts of Piper nigrum induces melanin dispersion in Rana tigerina tadpole melanophores.
    Sajid M; Ali SA
    J Recept Signal Transduct Res; 2011 Aug; 31(4):286-90. PubMed ID: 21663558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of somatolactin on melanosome aggregation in the melanophores of red drum (Sciaenops ocellatus) scales.
    Zhu Y; Thomas P
    Gen Comp Endocrinol; 1997 Jan; 105(1):127-33. PubMed ID: 9000475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The mechanisms of adrenergic and cholinergic effects on the lymphatic vessels of reptiles].
    Bulekbaeva DE; Khanturin MR; Lakpaeva ShG
    Fiziol Zh Im I M Sechenova; 1993 Oct; 79(10):55-9. PubMed ID: 7909473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noradrenaline- and melatonin-mediated regulation of pigment aggregation in fish melanophores.
    Aspengren S; Sköld HN; Quiroga G; Mårtensson L; Wallin M
    Pigment Cell Res; 2003 Feb; 16(1):59-64. PubMed ID: 12519126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Alpha and beta adrenergic control of muscle tonus].
    Cessi C
    Boll Soc Ital Biol Sper; 1973 Mar; 49(9):427-32. PubMed ID: 4150759
    [No Abstract]   [Full Text] [Related]  

  • 29. [Myocardial contractility and drug effects with special reference to the adrenergic mechanism].
    Otorii T; Imai S
    Nihon Rinsho; 1972 Oct; 30(10):2043-50. PubMed ID: 4405499
    [No Abstract]   [Full Text] [Related]  

  • 30. Berberine-induced pigment dispersion in Bufo melanostictus melanophores by stimulation of beta-2 adrenergic receptors.
    Ali SA; Naaz I; Choudhary RK
    J Recept Signal Transduct Res; 2014 Feb; 34(1):15-20. PubMed ID: 24099619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The control of granule movement in fish melanophores.
    Grundström N; Karlsson JO; Andersson RG
    Acta Physiol Scand; 1985 Nov; 125(3):415-21. PubMed ID: 3853446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization and characterization of adrenergic receptors on frog skin melanophores.
    Longshore MA; Horowitz JM
    Am J Physiol; 1981 Jul; 241(1):E84-9. PubMed ID: 6972704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores.
    Fujii R; Miyashita Y; Fujii Y
    J Neural Transm; 1982; 54(1-2):29-39. PubMed ID: 6286871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The function of alpha- and beta-adrenergic receptors and a cholinergic receptor in the secretory cell of rat parotid gland.
    Schramm M; Selinger Z
    Adv Cytopharmacol; 1974; 2():29-32. PubMed ID: 4155226
    [No Abstract]   [Full Text] [Related]  

  • 35. beta-Adrenergic receptor subtypes in melanophores of the marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus.
    Katayama H; Morishita F; Matsushima O; Fujimoto M
    Pigment Cell Res; 1999 Jun; 12(3):206-17. PubMed ID: 10385918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Further studies on the properties of bile acids. II. Effect of bile acids on the reactivity of adrenergic and cholinergic receptors in rat intestine.
    Szkudliński J
    Acta Physiol Pol; 1984; 35(5-6):500-8. PubMed ID: 6545992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catecholaminergic control of intracellular free calcium and beta-endorphin secretion of rat pituitary intermediate lobe cells.
    Némethy Z; Horváth G; Makara GB; Acs Z; Barna I
    J Neuroendocrinol; 1998 Feb; 10(2):85-91. PubMed ID: 9535054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of catecholamines and nitric oxide on pigment displacement of the chromatophores of freshwater snakehead teleost fish, Channa punctatus.
    Biswas SP; Jadhao AG; Palande NV
    Fish Physiol Biochem; 2014 Apr; 40(2):457-67. PubMed ID: 23995949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contractile response and amine receptor mechanisms in isolated middle cerebral artery of the cat.
    Nielsen KC; Owman C
    Brain Res; 1971 Mar; 27(1):33-42. PubMed ID: 4396591
    [No Abstract]   [Full Text] [Related]  

  • 40. Electrical and contractile responses of the pyloric region to adrenergic and cholinergic drugs.
    Daniel EE
    Can J Physiol Pharmacol; 1966 Nov; 44(6):951-79. PubMed ID: 4381914
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.