BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 7814363)

  • 1. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae.
    Hassett R; Kosman DJ
    J Biol Chem; 1995 Jan; 270(1):128-34. PubMed ID: 7814363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae.
    Martins LJ; Jensen LT; Simon JR; Keller GL; Winge DR
    J Biol Chem; 1998 Sep; 273(37):23716-21. PubMed ID: 9726978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator.
    Georgatsou E; Mavrogiannis LA; Fragiadakis GS; Alexandraki D
    J Biol Chem; 1997 May; 272(21):13786-92. PubMed ID: 9153234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1.
    Yamaguchi-Iwai Y; Serpe M; Haile D; Yang W; Kosman DJ; Klausner RD; Dancis A
    J Biol Chem; 1997 Jul; 272(28):17711-8. PubMed ID: 9211922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes.
    Georgatsou E; Alexandraki D
    Yeast; 1999 May; 15(7):573-84. PubMed ID: 10341420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae.
    Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC
    J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast.
    Jungmann J; Reins HA; Lee J; Romeo A; Hassett R; Kosman D; Jentsch S
    EMBO J; 1993 Dec; 12(13):5051-6. PubMed ID: 8262047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain.
    Lesuisse E; Casteras-Simon M; Labbe P
    J Biol Chem; 1996 Jun; 271(23):13578-83. PubMed ID: 8662826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae.
    Yamaguchi-Iwai Y; Dancis A; Klausner RD
    EMBO J; 1995 Mar; 14(6):1231-9. PubMed ID: 7720713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of heme and vacuole deficiency on FRE1 gene expression and ferrireductase activity in Saccharomyces cerevisiae.
    Amillet JM; Galiazzo F; Labbe-Bois R
    FEMS Microbiol Lett; 1996 Mar; 137(1):25-9. PubMed ID: 8935653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron.
    Dancis A; Roman DG; Anderson GJ; Hinnebusch AG; Klausner RD
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3869-73. PubMed ID: 1570306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic approach to elucidating eukaryotic iron metabolism.
    Klausner RD; Dancis A
    FEBS Lett; 1994 Nov; 355(2):109-13. PubMed ID: 7982480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae.
    Anderson GJ; Lesuisse E; Dancis A; Roman DG; Labbe P; Klausner RD
    J Inorg Biochem; 1992 Aug 15-Sep; 47(3-4):249-55. PubMed ID: 1431884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome P-450 reductase is responsible for the ferrireductase activity associated with isolated plasma membranes of Saccharomyces cerevisiae.
    Lesuisse E; Casteras-Simon M; Labbe P
    FEMS Microbiol Lett; 1997 Nov; 156(1):147-52. PubMed ID: 9368374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae.
    Shi X; Stoj C; Romeo A; Kosman DJ; Zhu Z
    J Biol Chem; 2003 Dec; 278(50):50309-15. PubMed ID: 12954629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae.
    Peña MM; Koch KA; Thiele DJ
    Mol Cell Biol; 1998 May; 18(5):2514-23. PubMed ID: 9599102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.
    Casas C; Aldea M; Espinet C; Gallego C; Gil R; Herrero E
    Yeast; 1997 Jun; 13(7):621-37. PubMed ID: 9200812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization.
    Rees EM; Thiele DJ
    J Biol Chem; 2007 Jul; 282(30):21629-38. PubMed ID: 17553781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae.
    Hassett R; Dix DR; Eide DJ; Kosman DJ
    Biochem J; 2000 Oct; 351 Pt 2(Pt 2):477-84. PubMed ID: 11023834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator.
    Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A
    Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.