These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 7814493)
1. Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. Kokai-Kun JF; Songer JG; Czeczulin JR; Chen F; McClane BA J Clin Microbiol; 1994 Oct; 32(10):2533-9. PubMed ID: 7814493 [TBL] [Abstract][Full Text] [Related]
2. Detection of enterotoxigenic Clostridium perfringens with a duplex PCR. Augustynowicz E; Gzyl A; Ślusarczyk J J Med Microbiol; 2002 Feb; 51(2):169-172. PubMed ID: 11863268 [TBL] [Abstract][Full Text] [Related]
3. Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens. Czeczulin JR; Collie RE; McClane BA Infect Immun; 1996 Aug; 64(8):3301-9. PubMed ID: 8757868 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Sarker MR; Carman RJ; McClane BA Mol Microbiol; 1999 Sep; 33(5):946-58. PubMed ID: 10476029 [TBL] [Abstract][Full Text] [Related]
5. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. Sparks SG; Carman RJ; Sarker MR; McClane BA J Clin Microbiol; 2001 Mar; 39(3):883-8. PubMed ID: 11230399 [TBL] [Abstract][Full Text] [Related]
6. In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production. Yasugi M; Sugahara Y; Hoshi H; Kondo K; Talukdar PK; Sarker MR; Yamamoto S; Kamata Y; Miyake M Microb Pathog; 2015 Aug; 85():1-10. PubMed ID: 25912832 [TBL] [Abstract][Full Text] [Related]
7. NanH Is Produced by Sporulating Cultures of Clostridium perfringens Type F Food Poisoning Strains and Enhances the Cytotoxicity of C. perfringens Enterotoxin. Li J; McClane BA mSphere; 2021 Apr; 6(2):. PubMed ID: 33910991 [No Abstract] [Full Text] [Related]
8. Development of duplex PCR assay for rapid detection of enterotoxigenic isolates of Clostridium perfringens. Tansuphasiri U Southeast Asian J Trop Med Public Health; 2001 Mar; 32(1):105-13. PubMed ID: 11485070 [TBL] [Abstract][Full Text] [Related]
9. Organization of the plasmid cpe Locus in Clostridium perfringens type A isolates. Miyamoto K; Chakrabarti G; Morino Y; McClane BA Infect Immun; 2002 Aug; 70(8):4261-72. PubMed ID: 12117935 [TBL] [Abstract][Full Text] [Related]
10. Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Czeczulin JR; Hanna PC; McClane BA Infect Immun; 1993 Aug; 61(8):3429-39. PubMed ID: 8335373 [TBL] [Abstract][Full Text] [Related]
11. Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Miki Y; Miyamoto K; Kaneko-Hirano I; Fujiuchi K; Akimoto S Appl Environ Microbiol; 2008 Sep; 74(17):5366-72. PubMed ID: 18606797 [TBL] [Abstract][Full Text] [Related]
12. Prevalence of enterotoxigenic Clostridium perfringens Isolates in Pittsburgh (Pennsylvania) area soils and home kitchens. Li J; Sayeed S; McClane BA Appl Environ Microbiol; 2007 Nov; 73(22):7218-24. PubMed ID: 17905877 [TBL] [Abstract][Full Text] [Related]
13. Detection of enterotoxigenic Clostridium perfringens in meat samples by using molecular methods. Kaneko I; Miyamoto K; Mimura K; Yumine N; Utsunomiya H; Akimoto S; McClane BA Appl Environ Microbiol; 2011 Nov; 77(21):7526-32. PubMed ID: 21890671 [TBL] [Abstract][Full Text] [Related]
14. Identification of an Important Orphan Histidine Kinase for the Initiation of Sporulation and Enterotoxin Production by Freedman JC; Li J; Mi E; McClane BA mBio; 2019 Jan; 10(1):. PubMed ID: 30670619 [No Abstract] [Full Text] [Related]
15. The identification and characterization of Clostridium perfringens by real-time PCR, location of enterotoxin gene, and heat resistance. Grant KA; Kenyon S; Nwafor I; Plowman J; Ohai C; Halford-Maw R; Peck MW; McLauchlin J Foodborne Pathog Dis; 2008 Oct; 5(5):629-39. PubMed ID: 18681798 [TBL] [Abstract][Full Text] [Related]
16. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Sarker MR; Shivers RP; Sparks SG; Juneja VK; McClane BA Appl Environ Microbiol; 2000 Aug; 66(8):3234-40. PubMed ID: 10919775 [TBL] [Abstract][Full Text] [Related]
17. Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Wen Q; McClane BA Appl Environ Microbiol; 2004 May; 70(5):2685-91. PubMed ID: 15128519 [TBL] [Abstract][Full Text] [Related]
18. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. Collie RE; McClane BA J Clin Microbiol; 1998 Jan; 36(1):30-6. PubMed ID: 9431915 [TBL] [Abstract][Full Text] [Related]
19. Enterotoxigenic Clostridium perfringens: detection and identification. Miyamoto K; Li J; McClane BA Microbes Environ; 2012; 27(4):343-9. PubMed ID: 22504431 [TBL] [Abstract][Full Text] [Related]
20. Identification of orphan histidine kinases that impact sporulation and enterotoxin production by Clostridium perfringens type F strain SM101 in a pathophysiologically-relevant ex vivo mouse intestinal contents model. Mehdizadeh Gohari I; Li J; Navarro MA; Mendonça FS; Uzal FA; McClane BA PLoS Pathog; 2023 Jun; 19(6):e1011429. PubMed ID: 37262083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]