These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 7814526)
81. Pulsed-field gel electrophoresis can yield DNA fingerprints of degradation-susceptible Clostridium difficile strains. Fawley WN; Wilcox MH J Clin Microbiol; 2002 Sep; 40(9):3546-7; author reply 3547. PubMed ID: 12202619 [No Abstract] [Full Text] [Related]
82. Isolation of Clostridium perfringens and Clostridioides difficile in diarrheic and nondiarrheic cats. Silva ROS; Ribeiro MG; de Paula CL; Pires IH; Oliveira Junior CA; Diniz AN; de Araújo Nunes TA; Lobato FCF Anaerobe; 2020 Apr; 62():102164. PubMed ID: 32151948 [TBL] [Abstract][Full Text] [Related]
83. Contamination and crossinfection with Clostridium difficile in an intensive care unit. Walters BA; Stafford R; Roberts RK; Seneviratne E Aust N Z J Med; 1982 Jun; 12(3):255-8. PubMed ID: 6956292 [TBL] [Abstract][Full Text] [Related]
85. Epidemiological investigation of nosocomial outbreak of staphylococcal skin diseases in neonatal ward. Kurlenda J; Grinholc M; Krzysztoń-Russjan J; Wiśniewska K Antonie Van Leeuwenhoek; 2009 May; 95(4):387-94. PubMed ID: 19234757 [TBL] [Abstract][Full Text] [Related]
86. Typing by sequencing the slpA gene of Clostridium difficile strains causing multiple outbreaks in Japan. Kato H; Yokoyama T; Arakawa Y J Med Microbiol; 2005 Feb; 54(Pt 2):167-171. PubMed ID: 15673512 [TBL] [Abstract][Full Text] [Related]
87. Whole genome sequencing of toxigenic Clostridium difficile in asymptomatic carriers: insights into possible role in transmission. Halstead FD; Ravi A; Thomson N; Nuur M; Hughes K; Brailey M; Oppenheim BA J Hosp Infect; 2019 Jun; 102(2):125-134. PubMed ID: 30359648 [TBL] [Abstract][Full Text] [Related]
88. Clostridium difficile in a children's hospital: assessment of environmental contamination. Warrack S; Duster M; Van Hoof S; Schmitz M; Safdar N Am J Infect Control; 2014 Jul; 42(7):802-4. PubMed ID: 24751141 [TBL] [Abstract][Full Text] [Related]
89. Host and pathogen factors for Clostridium difficile infection and colonization. Loo VG; Bourgault AM; Poirier L; Lamothe F; Michaud S; Turgeon N; Toye B; Beaudoin A; Frost EH; Gilca R; Brassard P; Dendukuri N; Béliveau C; Oughton M; Brukner I; Dascal A N Engl J Med; 2011 Nov; 365(18):1693-703. PubMed ID: 22047560 [TBL] [Abstract][Full Text] [Related]
90. Prevalence and risk factors for colonization by Clostridium difficile and extended-spectrum β-lactamase-producing Enterobacteriaceae in rehabilitation clinics in Germany. Arvand M; Ruscher C; Bettge-Weller G; Goltz M; Pfeifer Y J Hosp Infect; 2018 Jan; 98(1):14-20. PubMed ID: 28705583 [TBL] [Abstract][Full Text] [Related]
91. Clostridium difficile infection rates and spectrum of disease among peripartum women at one hospital from 2003 to 2007 with molecular typing analysis of recovered Clostridium difficile isolates. Venugopal AA; Gerding DN; Johnson S Am J Infect Control; 2011 Apr; 39(3):206-11. PubMed ID: 21126802 [TBL] [Abstract][Full Text] [Related]
92. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Warny M; Pepin J; Fang A; Killgore G; Thompson A; Brazier J; Frost E; McDonald LC Lancet; 2005 Sep 24-30; 366(9491):1079-84. PubMed ID: 16182895 [TBL] [Abstract][Full Text] [Related]
93. Use of pulsed-field gel electrophoresis to investigate an outbreak of Serratia marcescens infection in a neonatal intensive care unit. Jang TN; Fung CP; Yang TL; Shen SH; Huang CS; Lee SH J Hosp Infect; 2001 May; 48(1):13-9. PubMed ID: 11358466 [TBL] [Abstract][Full Text] [Related]
94. A three-year study entailing molecular characterization and epidemiology of Clostridium difficile in an Italian tertiary care hospital. Mancini A; La Vigna G; Puciarelli S; Lombardi FE; Barocci S Infez Med; 2018 Sep; 26(3):204-209. PubMed ID: 30246762 [TBL] [Abstract][Full Text] [Related]
95. Elimination of vancomycin-resistant enterococci from a neonatal intensive care unit following an outbreak. Ergaz Z; Arad I; Bar-Oz B; Peleg O; Benenson S; Minster N; Moses A; Block C J Hosp Infect; 2010 Apr; 74(4):370-6. PubMed ID: 19932526 [TBL] [Abstract][Full Text] [Related]
96. Development and evaluation of a novel, semiautomated Clostridium difficile typing platform. Westblade LF; Chamberland RR; MacCannell D; Collins R; Dubberke ER; Dunne WM; Burnham CA J Clin Microbiol; 2013 Feb; 51(2):621-4. PubMed ID: 23175261 [TBL] [Abstract][Full Text] [Related]
97. Prevalence and genotypic characteristics of Clostridium difficile in a closed and integrated human and swine population. Norman KN; Scott HM; Harvey RB; Norby B; Hume ME; Andrews K Appl Environ Microbiol; 2011 Aug; 77(16):5755-60. PubMed ID: 21724899 [TBL] [Abstract][Full Text] [Related]
98. Clostridium difficile stool shedding in infants hospitalized in two neonatal intensive care units is lower than previous point prevalence estimates using molecular diagnostic methods. Hines AG; Freifeld A; Zhao X; Berry AA; Willett L; Iwen PC; Simonsen KA BMC Pediatr; 2018 Apr; 18(1):137. PubMed ID: 29653526 [TBL] [Abstract][Full Text] [Related]
99. Nosocomial diarrhea caused by Clostridium perfringens in the Tsukuba-Tsuchiura district, Japan. Watanabe M; Hitomi S; Sawahata T J Infect Chemother; 2008 Jun; 14(3):228-31. PubMed ID: 18574660 [TBL] [Abstract][Full Text] [Related]
100. A nationwide study of molecular epidemiology and antimicrobial susceptibility of Clostridioides difficile in South Korea. Byun JH; Kim H; Kim JL; Kim D; Jeong SH; Shin JH; Kim YA; Shin JH; Shin KS; Uh Y Anaerobe; 2019 Dec; 60():102106. PubMed ID: 31655214 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]