BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7814731)

  • 1. Effects of feeding practices on milk fat concentration for dairy cows.
    Coulon JB; Agabriel C; Brunscwig G; Muller C; Bonaiti B
    J Dairy Sci; 1994 Sep; 77(9):2614-20. PubMed ID: 7814731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dried distillers grains plus solubles with corn silage or alfalfa hay as the primary forage source in dairy cow diets.
    Kleinschmit DH; Schingoethe DJ; Hippen AR; Kalscheur KF
    J Dairy Sci; 2007 Dec; 90(12):5587-99. PubMed ID: 18024751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economic and environmental feasibility of a perennial cow dairy farm.
    Rotz CA; Zartman DL; Crandall KL
    J Dairy Sci; 2005 Aug; 88(8):3009-19. PubMed ID: 16027215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Associations between winter herd management factors and milk protein yield in Ontario dairy herds.
    Sargeant JM; Lissemore KD; Martin SW; Leslie KE; McBride BW
    J Dairy Sci; 1997 Nov; 80(11):2790-802. PubMed ID: 9406070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of controlled nutrition during the dry period on dairy cow health, fertility and performance.
    Beever DE
    Anim Reprod Sci; 2006 Dec; 96(3-4):212-26. PubMed ID: 16949220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The association of herd milk production and management with a return-over-feed index in Ontario dairy herds.
    McLaren CJ; Lissemore KD; Duffield TF; Leslie KE; Kelton DF; Grexton B
    J Dairy Sci; 2005 Jan; 88(1):419-25. PubMed ID: 15591408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Economic and environmental impact of four levels of concentrate supplementation in grazing dairy herds.
    Soder KJ; Rotz CA
    J Dairy Sci; 2001 Nov; 84(11):2560-72. PubMed ID: 11768100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associations between herd-level feeding management practices, feed sorting, and milk production in freestall dairy farms.
    Sova AD; LeBlanc SJ; McBride BW; DeVries TJ
    J Dairy Sci; 2013 Jul; 96(7):4759-70. PubMed ID: 23660144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of hay and haylage from permanent Alpine meadows in winter dairy cow diets.
    Borreani G; Giaccone D; Mimosi A; Tabacco E
    J Dairy Sci; 2007 Dec; 90(12):5643-50. PubMed ID: 18024756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production.
    Eun JS; Beauchemin KA
    J Dairy Sci; 2005 Jun; 88(6):2140-53. PubMed ID: 15905444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between milk urea concentrations and nutritional management, production, and economic variables in Ontario dairy herds.
    Godden SM; Lissemore KD; Kelton DF; Leslie KE; Walton JS; Lumsden JH
    J Dairy Sci; 2001 May; 84(5):1128-39. PubMed ID: 11384039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dietary forage level and monensin on lactation performance, digestibility and fecal excretion of nutrients, and efficiency of feed nitrogen utilization of Holstein dairy cows.
    Martinez CM; Chung YH; Ishler VA; Bailey KW; Varga GA
    J Dairy Sci; 2009 Jul; 92(7):3211-21. PubMed ID: 19528598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rumen fermentation in lactating cows selected for milk fat content fed two forage to concentrate ratios with hay or silage.
    Murphy M; Akerlind M; Holtenius K
    J Dairy Sci; 2000 Apr; 83(4):756-64. PubMed ID: 10791792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbeliarde cow breeds.
    Ferlay A; Martin B; Pradel P; Coulon JB; Chilliard Y
    J Dairy Sci; 2006 Oct; 89(10):4026-41. PubMed ID: 16960079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems.
    Bell MJ; Wall E; Russell G; Simm G; Stott AW
    J Dairy Sci; 2011 Jul; 94(7):3662-78. PubMed ID: 21700056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production.
    Beauchemin KA; Yang WZ; Rode LM
    J Dairy Sci; 2003 Feb; 86(2):630-43. PubMed ID: 12647969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of converting nutrient dry matter to milk in Holstein herds.
    Britt JS; Thomas RC; Speer NC; Hall MB
    J Dairy Sci; 2003 Nov; 86(11):3796-801. PubMed ID: 14672212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow.
    Rustomo B; AlZahal O; Odongo NE; Duffield TF; McBride BW
    J Dairy Sci; 2006 Dec; 89(12):4758-68. PubMed ID: 17106107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows.
    Gozho GN; Mutsvangwa T
    J Dairy Sci; 2008 Jul; 91(7):2726-35. PubMed ID: 18565931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of acarbose on milk yield and composition in early-lactation dairy cattle fed a ration to induce subacute ruminal acidosis.
    McLaughlin CL; Thompson A; Greenwood K; Sherington J; Bruce C
    J Dairy Sci; 2009 Sep; 92(9):4481-8. PubMed ID: 19700709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.