These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7814764)

  • 1. Auditory brainstem response (ABR) peak amplitude variability reflects individual differences in cochlear response times.
    Don M; Ponton CW; Eggermont JJ; Masuda A
    J Acoust Soc Am; 1994 Dec; 96(6):3476-91. PubMed ID: 7814764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory brainstem responses to level-specific chirps in normal-hearing adults.
    Kristensen SG; Elberling C
    J Am Acad Audiol; 2012 Oct; 23(9):712-21. PubMed ID: 23072963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gender differences in cochlear response time: an explanation for gender amplitude differences in the unmasked auditory brain-stem response.
    Don M; Ponton CW; Eggermont JJ; Masuda A
    J Acoust Soc Am; 1993 Oct; 94(4):2135-48. PubMed ID: 8227753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of cochlear spectral processing on the timing and amplitude of the speech-evoked auditory brain stem response.
    Nuttall HE; Moore DR; Barry JG; Krumbholz K; de Boer J
    J Neurophysiol; 2015 Jun; 113(10):3683-91. PubMed ID: 25787954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brainstem Evoked Potential Indices of Subcortical Auditory Processing After Mild Traumatic Brain Injury.
    Vander Werff KR; Rieger B
    Ear Hear; 2017; 38(4):e200-e214. PubMed ID: 28319479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of sensory hearing loss on cochlear filter times estimated from auditory brainstem response latencies.
    Don M; Ponton CW; Eggermont JJ; Kwong B
    J Acoust Soc Am; 1998 Oct; 104(4):2280-9. PubMed ID: 10491692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Could Tailored Chirp Stimuli Benefit Measurement of the Supra-threshold Auditory Brainstem Wave-I Response?
    de Boer J; Hardy A; Krumbholz K
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):787-802. PubMed ID: 35984541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binaural interaction in the auditory brainstem response: a normative study.
    Van Yper LN; Vermeire K; De Vel EF; Battmer RD; Dhooge IJ
    Clin Neurophysiol; 2015 Apr; 126(4):772-9. PubMed ID: 25240247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual Differences in Auditory Brainstem Response Wave Characteristics: Relations to Different Aspects of Peripheral Hearing Loss.
    Verhulst S; Jagadeesh A; Mauermann M; Ernst F
    Trends Hear; 2016 Nov; 20():. PubMed ID: 27837052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory brain stem responses evoked by different chirps based on different delay models.
    Cebulla M; Elberling C
    J Am Acad Audiol; 2010; 21(7):452-60. PubMed ID: 20807481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency specificity of the human auditory brainstem and middle latency responses to brief tones. II. Derived response analyses.
    Oates P; Stapells DR
    J Acoust Soc Am; 1997 Dec; 102(6):3609-19. PubMed ID: 9407654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-specific contributions to the auditory brain stem response derived by means of pure-tone masking.
    Pantev C; Lagidze S; Pantev M; Kevanishvili Z
    Audiology; 1985; 24(4):275-87. PubMed ID: 4051877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory brainstem responses to a chirp stimulus designed from derived-band latencies in normal-hearing subjects.
    Elberling C; Don M
    J Acoust Soc Am; 2008 Nov; 124(5):3022-37. PubMed ID: 19045789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion.
    Dau T; Wegner O; Mellert V; Kollmeier B
    J Acoust Soc Am; 2000 Mar; 107(3):1530-40. PubMed ID: 10738807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of waveform, latency and amplitude values of chirp ABR in newborns.
    Cebulla M; Lurz H; Shehata-Dieler W
    Int J Pediatr Otorhinolaryngol; 2014 Apr; 78(4):631-6. PubMed ID: 24529909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of a cochlear injury model using bone-conducted ultrasound irradiation in guinea pigs and investigation on peripheral coding and recognition of ultrasonic signals.
    Wang F; Cao C; Huang C; Li Q; Li T; Liu X; Zhang S; Ceng X; Wang C
    Cell Mol Biol (Noisy-le-grand); 2018 Sep; 64(12):2-10. PubMed ID: 30301494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory brainstem responses to broad-band chirps: amplitude growth functions in sedated and anaesthetised infants.
    Mühler R; Rahne T; Verhey JL
    Int J Pediatr Otorhinolaryngol; 2013 Jan; 77(1):49-53. PubMed ID: 23062881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rising-frequency chirp stimulus to effectively enhance wave-I amplitude of auditory brainstem response.
    Morimoto T; Fujisaka YI; Okamoto Y; Irino T
    Hear Res; 2019 Jun; 377():104-108. PubMed ID: 30927685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity.
    Strelcyk O; Christoforidis D; Dau T
    J Acoust Soc Am; 2009 Oct; 126(4):1878-88. PubMed ID: 19813802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency specificity of chirp-evoked auditory brainstem responses.
    Wegner O; Dau T
    J Acoust Soc Am; 2002 Mar; 111(3):1318-29. PubMed ID: 11931309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.