These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7814765)

  • 21. Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry.
    Straube WL; Arthur RM
    Ultrasound Med Biol; 1994; 20(9):915-22. PubMed ID: 7886851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel power spectrum calculation method using phase-compensation and weighted averaging for the estimation of ultrasound attenuation.
    Heo SW; Kim H
    Ultrasonics; 2010 May; 50(6):592-9. PubMed ID: 20083291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defining optimal axial and lateral resolution for estimating scatterer properties from volumes using ultrasound backscatter.
    Oelze ML; O'Brien WD
    J Acoust Soc Am; 2004 Jun; 115(6):3226-34. PubMed ID: 15237847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On modeling the tissue response from ultrasonic B-scan images.
    Abeyratne UR; Petropulu AP; Reid JM
    IEEE Trans Med Imaging; 1996; 15(4):479-90. PubMed ID: 18215929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quadratic versus linear models to estimate the mean scattering spacing as a function of temperature in ex-vivo tissue.
    Cortela G; Pereira WCA; Negreira C; Benech N
    Ultrasonics; 2023 Sep; 134():107077. PubMed ID: 37364358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scatterer size estimation in pulse-echo ultrasound using focused sources: theoretical approximations and simulation analysis.
    Bigelow TA; O'Brien WD
    J Acoust Soc Am; 2004 Jul; 116(1):578-93. PubMed ID: 15296018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative ultrasonic characterization of diffuse scatterers in the presence of structures that produce coherent echoes.
    Luchies AC; Ghoshal G; O'Brien WD; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):893-904. PubMed ID: 22622974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of autoregressive spectral analysis to cepstral estimation of mean scatterer spacing.
    Wear KA; Wagner RF; Insana MF; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(1):50-8. PubMed ID: 18263156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simulation model for ultrasonic temperature imaging using change in backscattered energy.
    Trobaugh JW; Arthur RM; Straube WL; Moros EG
    Ultrasound Med Biol; 2008 Feb; 34(2):289-98. PubMed ID: 17935869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing.
    Huang K; Ta D; Wang W; Le LH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1453-64. PubMed ID: 18986934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasonic characterization of abdominal tissues via digital analysis of backscattered waveforms.
    Sommer FG; Joynt LF; Carroll BA; Macovski A
    Radiology; 1981 Dec; 141(3):811-7. PubMed ID: 7302239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal processing strategies that improve performance and understanding of the quantitative ultrasound SPECTRAL FIT algorithm.
    Bigelow TA; O'Brien WD
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1808-19. PubMed ID: 16240839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fine-tuning the H-scan for discriminating changes in tissue scatterers.
    Parker KJ; Baek J
    Biomed Phys Eng Express; 2020 May; 6(4):045012. PubMed ID: 33444273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying ultrasonic scattering sites from three-dimensional impedance maps.
    Mamou J; Oelze ML; O'Brien WD; Zachary JF
    J Acoust Soc Am; 2005 Jan; 117(1):413-23. PubMed ID: 15704434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens.
    Pereira WC; Bridal SL; Coron A; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):302-12. PubMed ID: 15128217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of structural change in diffuse liver disease with frequency domain analysis of ultrasound.
    Suzuki K; Hayashi N; Sasaki Y; Kono M; Kasahara A; Imai Y; Fusamoto H; Kamada T
    Hepatology; 1993 Jun; 17(6):1041-6. PubMed ID: 8514252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic frequency-domain tissue characterization: application to human spleens "in vivo'.
    Sommer FG; Joynt LF; Hayes DL; Macovski A
    Ultrasonics; 1982 Mar; 20(2):82-6. PubMed ID: 7058562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mean Scatterer Spacing Estimation Using Cepstrum-Based Continuous Wavelet Transform.
    Nasr R; Falou O; Shahin A; Hysi E; Wirtzfeld LA; Berndl ESL; Kolios MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jun; 67(6):1118-1126. PubMed ID: 31905136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Statistical framework for ultrasonic spectral parameter imaging.
    Lizzi FL; Astor M; Feleppa EJ; Shao M; Kalisz A
    Ultrasound Med Biol; 1997; 23(9):1371-82. PubMed ID: 9428136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of scatterer size from backscattered ultrasound: a simulation study.
    Romijn RL; Thijssen JM; van Beuningen GJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):593-606. PubMed ID: 18290239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.