These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7814766)

  • 21. Effects of medium viscoelasticity on bubble collapse strength of interacting polydisperse bubbles.
    Qin D; Zou Q; Zhong X; Zhang B; Li Z
    Ultrason Sonochem; 2023 May; 95():106375. PubMed ID: 36965309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dynamics of a non-equilibrium bubble near bio-materials.
    Ohl SW; Klaseboer E; Khoo BC
    Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of bubble-bubble interactions experiencing viscoelastic drag.
    Zilonova E; Solovchuk M; Sheu TWH
    Phys Rev E; 2019 Feb; 99(2-1):023109. PubMed ID: 30934281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics.
    Machado JC; Valente JS
    Ultrasonics; 2003 Nov; 41(8):605-13. PubMed ID: 14585472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioeffects of positive and negative acoustic pressures in vivo.
    Bailey MR; Dalecki D; Child SZ; Raeman CH; Penney DP; Blackstock DT; Carstensen EL
    J Acoust Soc Am; 1996 Dec; 100(6):3941-6. PubMed ID: 8969491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kriging model to study the dynamics of a bubble subjected to tandem shock waves as used in biomedical applications.
    Gutiérrez-Prieto Á; de Icaza-Herrera M; Loske AM; Castaño-Tostado E
    Ultrasonics; 2019 Jan; 91():10-18. PubMed ID: 30029075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles.
    Kreider W; Crum LA; Bailey MR; Sapozhnikov OA
    J Acoust Soc Am; 2011 Nov; 130(5):3531-40. PubMed ID: 22088027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning.
    Minsier V; Proost J
    Ultrason Sonochem; 2008 Apr; 15(4):598-604. PubMed ID: 17662636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):896-904. PubMed ID: 25965682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall.
    Suslov SA; Ooi A; Manasseh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent developments in SWL physics research.
    Zhong P; Xi X; Zhu S; Cocks FH; Preminger GM
    J Endourol; 1999 Nov; 13(9):611-7. PubMed ID: 10608511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy.
    Zilonova E; Solovchuk M; Sheu TWH
    Ultrason Sonochem; 2018 Jan; 40(Pt A):900-911. PubMed ID: 28946501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
    Klaseboer E; Fong SW; Turangan CK; Khoo BC; Szeri AJ; Calvisi ML; Sankin GN; Zhong P
    J Fluid Mech; 2007; 593():33-56. PubMed ID: 19018296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions.
    Brujan EA
    Ultrason Sonochem; 2019 Nov; 58():104694. PubMed ID: 31450304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.