These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7815064)

  • 1. Neural organization of the ventilatory activity in the frog, Rana catesbeiana. I.
    Kogo N; Perry SF; Remmers JE
    J Neurobiol; 1994 Sep; 25(9):1067-79. PubMed ID: 7815064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural organization of the ventilatory activity in the frog, Rana catesbeiana. II.
    Kogo N; Remmers JE
    J Neurobiol; 1994 Sep; 25(9):1080-94. PubMed ID: 7815065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem.
    Torgerson CS; Gdovin MJ; Remmers JE
    J Neurophysiol; 1998 Oct; 80(4):2015-22. PubMed ID: 9772257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurorespiratory pattern of gill and lung ventilation in the decerebrate spontaneously breathing tadpole.
    Gdovin MJ; Torgerson CS; Remmers JE
    Respir Physiol; 1998 Aug; 113(2):135-46. PubMed ID: 9832232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem.
    Winmill RE; Hedrick MS
    J Neurobiol; 2003 Jun; 55(3):278-87. PubMed ID: 12717698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE; Chen AK; Hedrick MS
    J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strychnine eliminates reciprocation and augmentation of respiratory bursts of the in vitro frog brainstem.
    Kimura N; Perry SF; Remmers JE
    Neurosci Lett; 1997 Mar; 225(1):9-12. PubMed ID: 9143005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laryngeal motor control in frogs: role of vagal and laryngeal feedback.
    Kogo N; Perry SF; Remmers JE
    J Neurobiol; 1997 Sep; 33(3):213-22. PubMed ID: 9298760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS; Chen AK; Jessop KL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):231-40. PubMed ID: 16023875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission of the respiratory rhythm to trigeminal and hypoglossal motor neurons in the American Bullfrog (Lithobates catesbeiana).
    Kottick A; Baghdadwala MI; Ferguson EV; Wilson RJ
    Respir Physiol Neurobiol; 2013 Aug; 188(2):180-91. PubMed ID: 23791823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception.
    Gdovin MJ; Torgerson CS; Remmers JE
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):275-86. PubMed ID: 10665380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE effects of tonic lung inflation on ventilation in the American bullfrog Rana catesbeiana Shaw.
    Sanders CE; Milsom WK
    J Exp Biol; 2001 Aug; 204(Pt 15):2647-56. PubMed ID: 11533114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyography of the opercularis muscle of Rana catesbeiana: an amphibian tonic muscle.
    Hetherington TE; Lombard RE
    J Morphol; 1983 Jan; 175(1):17-26. PubMed ID: 6601723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of pulmonary vagal afferents for respiratory muscle activity in the cat.
    Marek W; Muckenhoff K; Prabhakar NR
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 6():407-20. PubMed ID: 19218665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pattern of respiratory nerve activity in the bullfrog.
    Sakakibara Y
    Jpn J Physiol; 1984; 34(2):269-82. PubMed ID: 6332228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny of central chemoreception during fictive gill and lung ventilation in an in vitro brainstem preparation of Rana catesbeiana.
    Torgerson C; Gdovin M; Remmers J
    J Exp Biol; 1997; 200(Pt 15):2063-72. PubMed ID: 9319973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the respiratory central pattern generator by chloride-dependent inhibition during development in the bullfrog (Rana catesbeiana).
    Broch L; Morales RD; Sandoval AV; Hedrick MS
    J Exp Biol; 2002 Apr; 205(Pt 8):1161-9. PubMed ID: 11919275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fictive lung ventilation in the isolated brainstem preparation of the aquatic frog, Xenopus laevis.
    Kimura N
    Adv Exp Med Biol; 2010; 669():9-12. PubMed ID: 20217311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fictive respiratory rhythm in the isolated brainstem of frogs.
    McLean HA; Kimura N; Kogo N; Perry SF; Remmers JE
    J Comp Physiol A; 1995 May; 176(5):703-13. PubMed ID: 7769569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenergic modulation of respiratory motor output during tadpole development: Role of alpha-adrenoceptors.
    Fournier S; Kinkead R
    J Exp Biol; 2006 Sep; 209(Pt 18):3685-94. PubMed ID: 16943508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.