These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 7815067)

  • 21. A comparison of the escape behaviors of the cockroaches Blaberus craniifer and Periplaneta americana.
    Simpson BS; Ritzmann RE; Pollack AJ
    J Neurobiol; 1986 Sep; 17(5):405-19. PubMed ID: 3772361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions.
    Comer CM; Parks L; Halvorsen MB; Breese-Terteling A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):97-103. PubMed ID: 12607038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The antennal system and cockroach evasive behavior. I. Roles for visual and mechanosensory cues in the response.
    Ye S; Leung V; Khan A; Baba Y; Comer CM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):89-96. PubMed ID: 12607037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple feedback loops in the flying cockroach: excitation of the dorsal and inhibition of the ventral giant interneurons.
    Libersat F; Levy A; Camhi JM
    J Comp Physiol A; 1989 Sep; 165(5):651-68. PubMed ID: 2795498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronous firing by specific pairs of cercal giant interneurons in crickets encodes wind direction.
    Yono O; Shimozawa T
    Biosystems; 2008 Sep; 93(3):218-25. PubMed ID: 18550269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correspondence of escape-turning behavior with activity of descending mechanosensory interneurons in the cockroach, Periplaneta americana.
    Ye S; Comer CM
    J Neurosci; 1996 Sep; 16(18):5844-53. PubMed ID: 8795636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wind spectra and the response of the cercal system in the cockroach.
    Rinberg D; Davidowitz H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):867-76. PubMed ID: 14566422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wind-evoked evasive responses in flying cockroaches.
    Ganihar D; Libersat F; Wendler G; Cambi JM
    J Comp Physiol A; 1994 Jul; 175(1):49-65. PubMed ID: 8083847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response properties of wind-sensitive giant interneurons in the fourth-instar nymphs of the cricket, Gryllus bimaculatus.
    Matsuura T; Kanou M
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):1-9. PubMed ID: 16125990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural circuitry underlying linear representation of wind information in a nonspiking local interneuron of the cockroach.
    Okuma J; Kondoh Y
    J Comp Physiol A; 1996 Dec; 179(6):725-40. PubMed ID: 8956494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. White noise analysis of graded response in a wind-sensitive, nonspiking interneuron of the cockroach.
    Kondoh Y; Morishita H; Arima T; Okuma J; Hasegawa Y
    J Comp Physiol A; 1991 Apr; 168(4):429-43. PubMed ID: 1713969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of proprioceptive inputs to DPG interneurons in the cockroach.
    Murrain M; Ritzmann RE
    J Neurobiol; 1988 Sep; 19(6):552-70. PubMed ID: 3171576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motion analysis of escape movements evoked by tactile stimulation in the cockroach Periplaneta americana.
    Schaefer PL; Kondagunta GV; Ritzmann RE
    J Exp Biol; 1994 May; 190():287-94. PubMed ID: 7964395
    [No Abstract]   [Full Text] [Related]  

  • 34. Antennal motor system of the cockroach, Periplaneta americana.
    Baba Y; Comer CM
    Cell Tissue Res; 2008 Mar; 331(3):751-62. PubMed ID: 18193285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role for wind-up in trigeminal sensory processing: intensity coding of nociceptive stimuli in the rat.
    Coste J; Voisin DL; Luccarini P; Dallel R
    Cephalalgia; 2008 Jun; 28(6):631-9. PubMed ID: 18422721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological and physiological characterization of small multimodal ocellar interneurons in the American cockroach.
    Ohyama T; Toh Y
    J Comp Neurol; 1990 Nov; 301(4):501-10. PubMed ID: 2273096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escape responses following elimination of the giant interneuron pathway in the cockroach, Periplaneta americana.
    Comer CM; Dowd JP; Stubblefield GT
    Brain Res; 1988 Apr; 445(2):370-5. PubMed ID: 3370470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural basis of wind-receptive fields of cockroach giant interneurons.
    Daley DL
    Brain Res; 1982 Apr; 238(1):211-6. PubMed ID: 7083017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain.
    Nishino H; Nishikawa M; Yokohari F; Mizunami M
    J Comp Neurol; 2005 Dec; 493(2):291-308. PubMed ID: 16255033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compound sensory action potentials evoked by tactile and by electrical stimulation in normal median and sural nerves.
    Krarup C; Trojaborg W
    Muscle Nerve; 1994 Jul; 17(7):733-40. PubMed ID: 8007999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.