BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7815095)

  • 1. A quantum-mechanical study of the chain-length dependent stability of the extended and 3(10)-helix conformations in dehydroalanine oligopeptides.
    Casanovas J; Alemán C
    J Comput Aided Mol Des; 1994 Aug; 8(4):441-8. PubMed ID: 7815095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the environment and role of the pi-pi stacking interactions in the stabilization of the 3(10)-helix conformation in dehydroalanine oligopeptides.
    Alemän C
    Int J Pept Protein Res; 1995 Nov; 46(5):408-18. PubMed ID: 8567185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformation of dehydroalanine in short homopeptides: molecular dynamics simulations of a 6-residue chain.
    Zanuy D; Casanovas J; Alemán C
    Biophys Chem; 2002 Aug; 98(3):301-12. PubMed ID: 12128182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A helical arrangement of beta-substituents of dehydropeptides: synthesis and conformational study of sequential nona- and dodecapeptides possessing (Z)-beta-(1-naphthyl)dehydroalanine residues.
    Inai Y; Hirabayashi T
    Biopolymers; 2001 Oct; 59(5):356-69. PubMed ID: 11514939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conformational study of the dehydroalanine: dipeptide and homopolypeptide.
    Alemán C; Perez JJ
    Biopolymers; 1993 Dec; 33(12):1811-7. PubMed ID: 8268407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of dehydro-alanine in the design of peptides.
    Bhatnagar S; Rao GS; Singh TP
    Biosystems; 1995; 34(1-3):143-8. PubMed ID: 7727696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and conformational properties of (Z)-beta-(1-naphthyl)- dehydroalanine residue.
    Inai Y; Oshikawa T; Yamashita M; Hirabayashi T; Hirako T
    Biopolymers; 2001 Jan; 58(1):9-19. PubMed ID: 11072225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and mechanism of alpha helix initiation in alanine and valine peptides.
    Tobias DJ; Brooks CL
    Biochemistry; 1991 Jun; 30(24):6059-70. PubMed ID: 2043644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational behavior of beta-proline oligomers.
    Sandvoss LM; Carlson HA
    J Am Chem Soc; 2003 Dec; 125(51):15855-62. PubMed ID: 14677977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures and energies of D-galactose and galabiose conformers as calculated by ab initio and semiempirical methods.
    Rahal-Sekkal M; Sekkal N; Kleb DC; Bleckmann P
    J Comput Chem; 2003 May; 24(7):806-18. PubMed ID: 12692790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational-energy studies of tetrapeptide opiates. Candidate active and inactive conformations.
    Loew G; Hashimoto G; Williamson L; Burt S; Anderson W
    Mol Pharmacol; 1982 Nov; 22(3):667-77. PubMed ID: 7155126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio and DFT study of the conformational energy hypersurface of cyclic Gly-Gly-Gly.
    Tosso RD; Zamora MA; Suvire FD; Enriz RD
    J Phys Chem A; 2009 Oct; 113(40):10818-25. PubMed ID: 19754096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and accurate computation of the 13C chemical shifts for an alanine-rich peptide.
    Vila JA; Baldoni HA; Ripoll DR; Scheraga HA
    Proteins; 2004 Oct; 57(1):87-98. PubMed ID: 15326595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory study of β-hairpins in antiparallel β-sheets, a new classification based upon H-bond topology.
    Roy D; Pohl G; Ali-Torres J; Marianski M; Dannenberg JJ
    Biochemistry; 2012 Jul; 51(27):5387-93. PubMed ID: 22731966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyproline II structure in a sequence of seven alanine residues.
    Shi Z; Olson CA; Rose GD; Baldwin RL; Kallenbach NR
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9190-5. PubMed ID: 12091708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.
    Wang ZX; Duan Y
    J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ramachandran revisited. DFT energy surfaces of diastereomeric trialanine peptides in the gas phase and aqueous solution.
    Tsai MI; Xu Y; Dannenberg JJ
    J Phys Chem B; 2009 Jan; 113(1):309-18. PubMed ID: 19072621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and IR spectrum of phenylalanyl-glycyl-glycine tripetide in the gas-phase: IR/UV experiments, ab initio quantum chemical calculations, and molecular dynamic simulations.
    Reha D; Valdés H; Vondrásek J; Hobza P; Abu-Riziq A; Crews B; de Vries MS
    Chemistry; 2005 Nov; 11(23):6803-17. PubMed ID: 16092140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of oligopeptide vibrational CD: effects of isotopic labeling.
    Bour P; Kubelka J; Keiderling TA
    Biopolymers; 2000 Apr; 53(5):380-95. PubMed ID: 10738200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coupled two-dimensional main chain torsional potential for protein dynamics: generation and implementation.
    Li Y; Gao Y; Zhang X; Wang X; Mou L; Duan L; He X; Mei Y; Zhang JZ
    J Mol Model; 2013 Sep; 19(9):3647-57. PubMed ID: 23765039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.