These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 7815283)
1. The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes. Hirano T; Iseki K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K J Pharm Pharmacol; 1994 Aug; 46(8):676-9. PubMed ID: 7815283 [TBL] [Abstract][Full Text] [Related]
2. Ionic-diffusion potential-dependent transport of a new quinolone, sparfloxacin, across rat intestinal brush-border membrane. Iseki K; Hirano T; Tsuji K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K J Pharm Pharmacol; 1998 Jun; 50(6):627-34. PubMed ID: 9680072 [TBL] [Abstract][Full Text] [Related]
3. Transport mechanisms of enoxacin in rat brush-border membrane of renal cortex: interaction with organic cation transport system and ionic diffusion potential dependent uptake. Hirano T; Iseki K; Sugawara M; Miyazaki S; Takada M; Miyazaki K Biol Pharm Bull; 1995 Feb; 18(2):342-6. PubMed ID: 7538004 [TBL] [Abstract][Full Text] [Related]
4. The pH dependent uptake of enoxacin by rat intestinal brush-border membrane vesicles. Iseki K; Hirano T; Fukushi Y; Kitamura Y; Miyazaki S; Takada M; Sugawara M; Saitoh H; Miyazaki K J Pharm Pharmacol; 1992 Sep; 44(9):722-6. PubMed ID: 1360522 [TBL] [Abstract][Full Text] [Related]
5. Transport of guanidine in rabbit intestinal brush-border membrane vesicles. Miyamoto Y; Ganapathy V; Leibach FH Am J Physiol; 1988 Jul; 255(1 Pt 1):G85-92. PubMed ID: 2839044 [TBL] [Abstract][Full Text] [Related]
6. The intestinal transport mechanism of fluoroquinolones: inhibitory effect of ciprofloxacin, an enoxacin derivative, on the membrane potential-dependent uptake of enoxacin. Hirano T; Iseki K; Sato I; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K Pharm Res; 1995 Sep; 12(9):1299-303. PubMed ID: 8570525 [TBL] [Abstract][Full Text] [Related]
7. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine. Tsuji A; Terasaki T; Tamai I; Hirooka H J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815 [TBL] [Abstract][Full Text] [Related]
8. Effect of hydrogen ion-gradient on carrier-mediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine. Takuwa N; Shimada T; Matsumoto H; Himukai M; Hoshi T Jpn J Physiol; 1985; 35(4):629-42. PubMed ID: 4068369 [TBL] [Abstract][Full Text] [Related]
9. Membrane-potential-dependent uptake of tryptamine by rat intestinal brush-border membrane vesicles. Sugawara M; Sasaki M; Iseki K; Miyazaki K Biochim Biophys Acta; 1992 Nov; 1111(2):145-50. PubMed ID: 1329960 [TBL] [Abstract][Full Text] [Related]
10. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles. Shiuan D; Weinstein SW Am J Physiol; 1984 Nov; 247(5 Pt 2):F837-47. PubMed ID: 6093593 [TBL] [Abstract][Full Text] [Related]
11. The transport mechanism of an organic cation, disopyramide, by brush-border membranes. Comparison between renal cortex and small intestine of the rat. Takahashi Y; Itoh T; Kobayashi M; Sugawara M; Saitoh H; Iseki K; Miyazaki K; Miyazaki S; Takada M; Kawashima Y J Pharm Pharmacol; 1993 May; 45(5):419-24. PubMed ID: 8099959 [TBL] [Abstract][Full Text] [Related]
12. Evidence for an organic cation-proton antiport system in brush-border membranes isolated from the human term placenta. Ganapathy V; Ganapathy ME; Nair CN; Mahesh VB; Leibach FH J Biol Chem; 1988 Apr; 263(10):4561-8. PubMed ID: 3350804 [TBL] [Abstract][Full Text] [Related]
13. Phenolsulfonphthalein transport by potential-sensitive urate transport system. Itagaki S; Shimamoto S; Sugawara M; Kobayashi M; Miyazaki K; Hirano T; Iseki K Eur J Pharmacol; 2005 Aug; 518(2-3):83-9. PubMed ID: 16083873 [TBL] [Abstract][Full Text] [Related]
14. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. Okano T; Inui K; Maegawa H; Takano M; Hori R J Biol Chem; 1986 Oct; 261(30):14130-4. PubMed ID: 3021727 [TBL] [Abstract][Full Text] [Related]
15. Evidence for tripeptide-proton symport in renal brush border membrane vesicles. Studies in a novel rat strain with a genetic absence of dipeptidyl peptidase IV. Tiruppathi C; Ganapathy V; Leibach FH J Biol Chem; 1990 Feb; 265(4):2048-53. PubMed ID: 1967607 [TBL] [Abstract][Full Text] [Related]
16. Chloride transport across rat ileal basolateral membrane vesicles. Daher M; Acra S; Dykes W; Ghishan FK Proc Soc Exp Biol Med; 1992 Dec; 201(3):254-60. PubMed ID: 1438341 [TBL] [Abstract][Full Text] [Related]
17. Transport of procainamide via H(+)/tertiary amine antiport system in rabbit intestinal brush-border membrane. Katsura T; Mizuuchi H; Hashimoto Y; Inui KI Am J Physiol Gastrointest Liver Physiol; 2000 Oct; 279(4):G799-805. PubMed ID: 11005768 [TBL] [Abstract][Full Text] [Related]
18. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. Ganapathy V; Leibach FH J Biol Chem; 1983 Dec; 258(23):14189-92. PubMed ID: 6643475 [TBL] [Abstract][Full Text] [Related]
19. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential. Daniel H; Morse EL; Adibi SA J Biol Chem; 1991 Oct; 266(30):19917-24. PubMed ID: 1939055 [TBL] [Abstract][Full Text] [Related]
20. Facilitated diffusion of urate in avian brush-border membrane vesicles. Grassl SM Am J Physiol Cell Physiol; 2002 Oct; 283(4):C1155-62. PubMed ID: 12225979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]