These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 7815307)

  • 41. Methionine as methyl-group donor in the synthesis of Mycobacterium avium envelope lipids, and its inhibition by DL-ethionine, D-norleucine and DL-norleucine.
    David HL; Clavel-Seres S; Clément F; Lazlo A; Rastogi N
    Acta Leprol; 1989; 7 Suppl 1():77-80. PubMed ID: 2504011
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Accumulation of 9α-hydroxy-4-androstene-3,17-dione by co-expressing kshA and kshB encoding component of 3-ketosteroid-9α-hydroxylase in Mycobacterium sp. NRRL B-3805].
    Yuan J; Chen G; Cheng S; Ge F; Qiong W; Li W; Li J
    Sheng Wu Gong Cheng Xue Bao; 2015 Apr; 31(4):523-33. PubMed ID: 26380409
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure-to-function relationship of mycobacterial cell envelope components.
    Takayama K; Datta AK
    Res Microbiol; 1991 May; 142(4):443-8. PubMed ID: 1871431
    [No Abstract]   [Full Text] [Related]  

  • 44. Methyl-beta-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria.
    Donova MV; Nikolayeva VM; Dovbnya DV; Gulevskaya SA; Suzina NE
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1981-1992. PubMed ID: 17526855
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of androsta-1,4-diene-3,17-dione from cholesterol using immobilized growing cells of Mycobacterium sp. NRRL B-3683 adsorbed on solid carriers.
    Lee CY; Liu WH
    Appl Microbiol Biotechnol; 1992 Feb; 36(5):598-603. PubMed ID: 1368063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New product identification in the sterol metabolism by an industrial strain Mycobacterium neoaurum NRRL B-3805.
    Li X; Chen X; Wang Y; Yao P; Zhang R; Feng J; Wu Q; Zhu D; Ma Y
    Steroids; 2018 Apr; 132():40-45. PubMed ID: 29427574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drug sensitivity and environmental adaptation of mycobacterial cell wall components.
    Barry CE; Mdluli K
    Trends Microbiol; 1996 Jul; 4(7):275-81. PubMed ID: 8829336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ, real-time tracking of cell wall topography and nanomechanics of antimycobacterial drugs treated Mycobacterium JLS using atomic force microscopy.
    Wu Y; Zhou A
    Chem Commun (Camb); 2009 Dec; (45):7021-3. PubMed ID: 19904381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Evaluation of clinical efficacy of isoniazid and ethambutol in the treatment of nontuberculous mycobacteriosis based on in vitro susceptibility testing].
    Tsukamura M
    Kekkaku; 1989 Aug; 64(8):511-8. PubMed ID: 2811008
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biocatalysis of Steroids with Mycobacterium sp. in Aqueous and Organic Media.
    de Carvalho CCCR; Fernandes P
    Methods Mol Biol; 2017; 1645():313-320. PubMed ID: 28710638
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced conversion of sterols to steroid synthons by augmenting the peptidoglycan synthesis gene pbpB in Mycobacterium neoaurum.
    Sun WJ; Liu YJ; Liu HH; Ma JD; Ren YH; Wang FQ; Wei DZ
    J Basic Microbiol; 2019 Sep; 59(9):924-935. PubMed ID: 31347189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antibacterial action of colistin (polymyxin E) against Mycobacterium aurum.
    David HL; Rastogi N
    Antimicrob Agents Chemother; 1985 May; 27(5):701-7. PubMed ID: 4015067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Katanosin B and plusbacin A(3), inhibitors of peptidoglycan synthesis in methicillin-resistant Staphylococcus aureus.
    Maki H; Miura K; Yamano Y
    Antimicrob Agents Chemother; 2001 Jun; 45(6):1823-7. PubMed ID: 11353632
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbial transformation of beta-sitosterol and stigmasterol into 26-oxygenated derivatives.
    Ambrus G; Ilköy E; Jekkel A; Horváth G; Böcskei Z
    Steroids; 1995 Sep; 60(9):621-5. PubMed ID: 8545851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The site of inhibition of bacterial cell wall peptidoglycan synthesis by azureomycin B, a new antibiotic.
    Spiri-Nakagawa P; Oiwa R; Tanaka Y; Tanaka H; Omura S
    J Biochem; 1980 Aug; 88(2):565-70. PubMed ID: 6774972
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosynthesis of peptidoglycan in Gaffkya homari. The mode of action of penicillin G and mecillinam.
    Hammes WP
    Eur J Biochem; 1976 Nov; 70(1):107-13. PubMed ID: 12941
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria.
    Lambert PA
    J Appl Microbiol; 2002; 92 Suppl():46S-54S. PubMed ID: 12000612
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determination of the primary target for isoniazid in mycobacterial mycolic acid biosynthesis with Mycobacterium aurum A+.
    Wheeler PR; Anderson PM
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):451-7. PubMed ID: 8809032
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on the elongation of bacterial cell wall peptidoglycan and its inhibition by penicillin.
    Mirelman D; Bracha R; Sharon N
    Ann N Y Acad Sci; 1974 May; 235(0):326-47. PubMed ID: 4527994
    [No Abstract]   [Full Text] [Related]  

  • 60. Combined vs. single-drug studies of susceptibilities of Mycobacterium kansasii to isoniazid, streptomycin, and ethambutol.
    Tsang AY; Bentz RR; Schork MA; Sodeman TM
    Am J Clin Pathol; 1978 Nov; 70(5):816-20. PubMed ID: 717288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.