These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7815487)

  • 1. Rhinovirus-mediated endosomal release of transfection complexes.
    Zauner W; Blaas D; Kuechler E; Wagner E
    J Virol; 1995 Feb; 69(2):1085-92. PubMed ID: 7815487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2.
    Prchla E; Plank C; Wagner E; Blaas D; Fuchs R
    J Cell Biol; 1995 Oct; 131(1):111-23. PubMed ID: 7559769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating.
    Hewat EA; Blaas D
    J Virol; 2004 Mar; 78(6):2935-42. PubMed ID: 14990711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection.
    Bayer N; Schober D; Prchla E; Murphy RF; Blaas D; Fuchs R
    J Virol; 1998 Dec; 72(12):9645-55. PubMed ID: 9811698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncoating of human rhinovirus serotype 2 from late endosomes.
    Prchla E; Kuechler E; Blaas D; Fuchs R
    J Virol; 1994 Jun; 68(6):3713-23. PubMed ID: 8189509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opening of size-selective pores in endosomes during human rhinovirus serotype 2 in vivo uncoating monitored by single-organelle flow analysis.
    Brabec M; Schober D; Wagner E; Bayer N; Murphy RF; Blaas D; Fuchs R
    J Virol; 2005 Jan; 79(2):1008-16. PubMed ID: 15613329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypsin sensitivity of several human rhinovirus serotypes in their low pH-induced conformation.
    Kowalski H; Maurer-Fogy I; Vriend G; Casari G; Beyer A; Blaas D
    Virology; 1989 Aug; 171(2):611-4. PubMed ID: 2548332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of a peptide inhibitor of human rhinovirus.
    Poritz MA; Malmstrom S; Schmitt A; Kim MK; Zharkikh L; Kamb A; Teng DH
    Virology; 2003 Aug; 313(1):170-83. PubMed ID: 12951031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major and minor receptor group human rhinoviruses penetrate from endosomes by different mechanisms.
    Schober D; Kronenberger P; Prchla E; Blaas D; Fuchs R
    J Virol; 1998 Feb; 72(2):1354-64. PubMed ID: 9445036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the three-dimensional structure of two human rhinoviruses (HRV2 and HRV14).
    Blaas D; Kuechler E; Vriend G; Arnold E; Luo M; Rossmann MG
    Proteins; 1987; 2(4):263-72. PubMed ID: 2834716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human rhinovirus 3 at 3.0 A resolution.
    Zhao R; Pevear DC; Kremer MJ; Giranda VL; Kofron JA; Kuhn RJ; Rossmann MG
    Structure; 1996 Oct; 4(10):1205-20. PubMed ID: 8939746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Evolution of Rhinovirus Identifies Capsid-Destabilizing Mutations Driving Low-pH-Independent Genome Uncoating.
    Murer L; Petkidis A; Vallet T; Vignuzzi M; Greber UF
    J Virol; 2022 Jan; 96(2):e0106021. PubMed ID: 34705560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wortmannin delays transfer of human rhinovirus serotype 2 to late endocytic compartments.
    Brabec M; Blaas D; Fuchs R
    Biochem Biophys Res Commun; 2006 Sep; 348(2):741-9. PubMed ID: 16890915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of clathrin-dependent endocytosis has multiple effects on human rhinovirus serotype 2 cell entry.
    Bayer N; Schober D; Hüttinger M; Blaas D; Fuchs R
    J Biol Chem; 2001 Feb; 276(6):3952-62. PubMed ID: 11073943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage site between VP1 and P2A of human rhinovirus is different in serotypes 2 and 14.
    Kowalski H; Maurer-Fogy I; Zorn M; Mischak H; Kuechler E; Blaas D
    J Gen Virol; 1987 Dec; 68 ( Pt 12)():3197-200. PubMed ID: 2826658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds.
    Ledford RM; Patel NR; Demenczuk TM; Watanyar A; Herbertz T; Collett MS; Pevear DC
    J Virol; 2004 Apr; 78(7):3663-74. PubMed ID: 15016887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internalization of human rhinovirus 14 into HeLa and ICAM-1-transfected BHK cells.
    Grunert HP; Wolf KU; Langner KD; Sawitzky D; Habermehl KO; Zeichhardt H
    Med Microbiol Immunol; 1997 Jun; 186(1):1-9. PubMed ID: 9255760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle.
    Hadfield AT; Lee Wm; Zhao R; Oliveira MA; Minor I; Rueckert RR; Rossmann MG
    Structure; 1997 Mar; 5(3):427-41. PubMed ID: 9083115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and activity of piperazine-containing antirhinoviral agents and crystal structure of SDZ 880-061 bound to human rhinovirus 14.
    Oren DA; Zhang A; Nesvadba H; Rosenwirth B; Arnold E
    J Mol Biol; 1996 May; 259(1):120-34. PubMed ID: 8648640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of antiviral agents that interact with the capsid of human rhinoviruses.
    Badger J; Minor I; Oliveira MA; Smith TJ; Rossmann MG
    Proteins; 1989; 6(1):1-19. PubMed ID: 2558377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.