BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7815928)

  • 1. Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors.
    Vandergon TL; Reitman M
    Mol Biol Evol; 1994 Nov; 11(6):886-98. PubMed ID: 7815928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytogenetic repartition of chicken CR1 sequences evidenced by PRINS in Galliformes and some other birds.
    Coullin P; Bed'Hom B; Candelier JJ; Vettese D; Maucolin S; Moulin S; Galkina SA; Bernheim A; Volobouev V
    Chromosome Res; 2005; 13(7):665-73. PubMed ID: 16235116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A retrotransposon of the non-long terminal repeat class from the human blood fluke Schistosoma mansoni. Similarities to the chicken-repeat-1-like elements of vertebrates.
    Drew AC; Brindley PJ
    Mol Biol Evol; 1997 Jun; 14(6):602-10. PubMed ID: 9190061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subfamilies of CR1 non-LTR retrotransposons have different 5'UTR sequences but are otherwise conserved.
    Haas NB; Grabowski JM; North J; Moran JV; Kazazian HH; Burch JB
    Gene; 2001 Mar; 265(1-2):175-83. PubMed ID: 11255020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel CR1 subfamilies in an avian order with recently active elements.
    St John J; Quinn TW
    Mol Phylogenet Evol; 2008 Dec; 49(3):1008-14. PubMed ID: 18929670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chicken repeat 1 (CR1) elements, which define an ancient family of vertebrate non-LTR retrotransposons, contain two closely spaced open reading frames.
    Haas NB; Grabowski JM; Sivitz AB; Burch JB
    Gene; 1997 Sep; 197(1-2):305-9. PubMed ID: 9332379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the entire sequence of turtle CR1: the first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif.
    Kajikawa M; Ohshima K; Okada N
    Mol Biol Evol; 1997 Dec; 14(12):1206-17. PubMed ID: 9402732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Specific Requirements for CR1 Retrotransposition Explain the Scarcity of Retrogenes in Birds.
    Suh A
    J Mol Evol; 2015 Aug; 81(1-2):18-20. PubMed ID: 26223967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons.
    Burch JB; Davis DL; Haas NB
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8199-203. PubMed ID: 8396264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenomic investigation of CR1 LINE diversity in reptiles.
    Shedlock AM
    Syst Biol; 2006 Dec; 55(6):902-11. PubMed ID: 17345672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rise and fall of the CR1 subfamily in the lineage leading to penguins.
    Watanabe M; Nikaido M; Tsuda TT; Inoko H; Mindell DP; Murata K; Okada N
    Gene; 2006 Jan; 365():57-66. PubMed ID: 16368202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements.
    Ohshima K; Hamada M; Terai Y; Okada N
    Mol Cell Biol; 1996 Jul; 16(7):3756-64. PubMed ID: 8668192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes.
    Suh A; Churakov G; Ramakodi MP; Platt RN; Jurka J; Kojima KK; Caballero J; Smit AF; Vliet KA; Hoffmann FG; Brosius J; Green RE; Braun EL; Ray DA; Schmitz J
    Genome Biol Evol; 2014 Dec; 7(1):205-17. PubMed ID: 25503085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CR1 element is embedded in a novel tandem repeat (HinfI repeat) within the chicken genome.
    Li J; Leung FC
    Genome; 2006 Feb; 49(2):97-103. PubMed ID: 16498459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of chicken CR1 retrotransposons is independent of Dicer-mediated RNA interference pathway.
    Lee SH; Eldi P; Cho SY; Rangasamy D
    BMC Biol; 2009 Aug; 7():53. PubMed ID: 19691826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of mutation rates reveals diverse subfamily structure of galliform CR1 repeats.
    Liu GE; Jiang L; Tian F; Zhu B; Song J
    Genome Biol Evol; 2009 May; 1():119-30. PubMed ID: 20333183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new repetitive element of the CR1 family downstream of the chicken vitellogenin gene.
    van het Schip F; Samallo J; Meijlink F; Gruber M; AB G
    Nucleic Acids Res; 1987 May; 15(10):4193-202. PubMed ID: 3035488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal method for the study of CR1 retroposons in nonmodel bird genomes.
    Suh A; Kriegs JO; Donnellan S; Brosius J; Schmitz J
    Mol Biol Evol; 2012 Oct; 29(10):2899-903. PubMed ID: 22522308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis.
    Piskurek O; Nishihara H; Okada N
    Gene; 2009 Jul; 441(1-2):111-8. PubMed ID: 19118606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CR1 retroposons provide a new insight into the phylogeny of Phasianidae species (Aves: Galliformes).
    Liu Z; He L; Yuan H; Yue B; Li J
    Gene; 2012 Jul; 502(2):125-32. PubMed ID: 22565186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.