These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7816006)

  • 1. Effect of increased dietary phosphate intake on dopamine excretion in the presence and absence of the renal nerves.
    Berndt TJ; Khraibi AA; Thothathri V; Dousa TP; Tyce GM; Knox FG
    Miner Electrolyte Metab; 1994; 20(3):158-62. PubMed ID: 7816006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excretion of catecholamines and metabolites in response to increased dietary phosphate intake.
    Berndt TJ; MacDonald A; Walikonis R; Chinnow S; Dousa TP; Tyce GM; Knox FG
    J Lab Clin Med; 1993 Jul; 122(1):80-4. PubMed ID: 8320494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NTP Toxicology and Carcinogenesis Studies of 1-Amino-2,4-Dibromoanthraquinone (CAS No. 81-49-2) in F344/N Rats and B6C3F1 Mice (Feed Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1996 Aug; 383():1-370. PubMed ID: 12692653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ammonium chloride and dietary phosphorus in the azotaemic rat. I. Renal function and biochemical changes.
    Jara A; Chacón C; Ibaceta M; Valdivieso A; Felsenfeld AJ
    Nephrol Dial Transplant; 2004 Aug; 19(8):1986-92. PubMed ID: 15173378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute renal denervation decreases tubular phosphate reabsorption.
    Mann KJ; Dousa DM; Kerrigan RJ; Berndt TJ; Knox FG
    Miner Electrolyte Metab; 1992; 18(6):354-8. PubMed ID: 1291856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding-induced increase in urinary dopamine excretion is independent of renal innervation and sodium intake.
    Mühlbauer B; Osswald H
    Am J Physiol; 1994 Apr; 266(4 Pt 2):F563-7. PubMed ID: 8184888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the renal nerves and prostaglandins on the phosphaturic response to PTH in phosphate-deprived rats.
    Berndt TJ; Khraibi AA; Knox FG
    Am J Physiol; 1995 Mar; 268(3 Pt 2):R731-5. PubMed ID: 7535011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of an early weaning on phosphate transport maturation in the rat kidney: influence of the phosphate content of the diet.
    Lelievre-Pegorier M; Leroy B; Moreau E; Herpe-Patsouris L; Merlet-Benichou C
    Pediatr Res; 1992 Dec; 32(6):704-9. PubMed ID: 1287562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal denervation enhances the phosphaturic effect of parathyroid hormone.
    Mann KJ; Rybczynska A; Berndt TJ; Hoppe A; Tyce GM; Knox FG
    Miner Electrolyte Metab; 1991; 17(1):16-20. PubMed ID: 1770912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal nerves and catecholamine excretion.
    Morgunov N; Baines AD
    Am J Physiol; 1981 Jan; 240(1):F75-81. PubMed ID: 7457605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal nerves and sodium conservation in conscious rats of different strains kept on various diets.
    Takács L; Szénási G; Bencsáth P
    Acta Med Hung; 1988; 45(3-4):365-75. PubMed ID: 3249662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal hyperphosphatemic response to fasting in X-linked hypophosphatemic mice.
    Mühlbauer RC; Bonjour JP; Fleisch H
    Miner Electrolyte Metab; 1984; 10(6):362-5. PubMed ID: 6503892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between sodium balance, intrarenal dopamine synthesis, and sympathetic activity in HLA-identical kidney donors and recipients.
    Barendregt JN; van Nispen tot Pannerden LL; Chang PC
    Nephrol Dial Transplant; 1995; 10(3):341-8. PubMed ID: 7792028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicology and Carcinogenesis Studies of Mercuric Chloride (CAS No. 7487-94-7) in F344 Rats and B6C3F1 Mice (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1993 Feb; 408():1-260. PubMed ID: 12621522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Electrolyte and acid-base balance disorders in advanced chronic kidney disease].
    Alcázar Arroyo R
    Nefrologia; 2008; 28 Suppl 3():87-93. PubMed ID: 19018744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NTP Toxicology and Carcinogenesis Studies of o-Benzyl-p-Chlorophenol (CAS No. 120-32-1) in F344/N Rats and B6C3F1 Mice (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1994 Jan; 424():1-304. PubMed ID: 12616287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NTP Toxicology and Carcinogenesis Studies of Tricresyl Phosphate (CAS No. 1330-78-5) in F344/N Rats and B6C3F1 Mice (Gavage and Feed Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1994 Sep; 433():1-321. PubMed ID: 12616298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of salt intake and renal denervation on catecholamine catabolism and excretion.
    Baines AD
    Kidney Int; 1982 Feb; 21(2):316-22. PubMed ID: 7069996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary sodium-induced changes in renal noradrenergic and dopaminergic responses in rats.
    Jadhav AL; Lokhandwala MF
    J Hum Hypertens; 1990 Apr; 4(2):163-4. PubMed ID: 2338689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal response to low and high phosphate intake in weanling, adolescent and adult rats.
    Karlén J
    Acta Physiol Scand; 1989 Mar; 135(3):317-22. PubMed ID: 2929372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.