These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 7816031)
1. Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr1 delta strains. Santos-Rosa H; Aguilera A Mol Gen Genet; 1994 Oct; 245(2):224-36. PubMed ID: 7816031 [TBL] [Abstract][Full Text] [Related]
2. Isolation and genetic analysis of extragenic suppressors of the hyper-deletion phenotype of the Saccharomyces cerevisiae hpr1 delta mutation. Santos-Rosa H; Aguilera A Genetics; 1995 Jan; 139(1):57-66. PubMed ID: 7705651 [TBL] [Abstract][Full Text] [Related]
3. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes. Prado F; Aguilera A Genetics; 1995 Jan; 139(1):109-23. PubMed ID: 7705617 [TBL] [Abstract][Full Text] [Related]
4. Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae. Aguilera A Curr Genet; 1995 Mar; 27(4):298-305. PubMed ID: 7614550 [TBL] [Abstract][Full Text] [Related]
5. HPR1, a novel yeast gene that prevents intrachromosomal excision recombination, shows carboxy-terminal homology to the Saccharomyces cerevisiae TOP1 gene. Aguilera A; Klein HL Mol Cell Biol; 1990 Apr; 10(4):1439-51. PubMed ID: 2181275 [TBL] [Abstract][Full Text] [Related]
6. Stability of YACs containing ribosomal or RCP/GCP locus DNA in wild-type S. cerevisiae and RAD mutant strains. Kohno K; Wada M; Schlessinger D; D'Urso M; Tanabe S; Oshiro T; Imamoto F DNA Res; 1994; 1(4):191-9. PubMed ID: 8535977 [TBL] [Abstract][Full Text] [Related]
7. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. McDonald JP; Rothstein R Genetics; 1994 Jun; 137(2):393-405. PubMed ID: 8070653 [TBL] [Abstract][Full Text] [Related]
8. Characterization of mutations that suppress the temperature-sensitive growth of the hpr1 delta mutant of Saccharomyces cerevisiae. Fan HY; Klein HL Genetics; 1994 Aug; 137(4):945-56. PubMed ID: 7982575 [TBL] [Abstract][Full Text] [Related]
9. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Tran HT; Degtyareva NP; Koloteva NN; Sugino A; Masumoto H; Gordenin DA; Resnick MA Mol Cell Biol; 1995 Oct; 15(10):5607-17. PubMed ID: 7565712 [TBL] [Abstract][Full Text] [Related]
10. Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae. Freedman JA; Jinks-Robertson S DNA Repair (Amst); 2004 Nov; 3(11):1437-46. PubMed ID: 15380099 [TBL] [Abstract][Full Text] [Related]
11. The yeast HRS1 gene encodes a polyglutamine-rich nuclear protein required for spontaneous and hpr1-induced deletions between direct repeats. Santos-Rosa H; Clever B; Heyer WD; Aguilera A Genetics; 1996 Mar; 142(3):705-16. PubMed ID: 8849881 [TBL] [Abstract][Full Text] [Related]
12. Genetic and molecular analysis of recombination events in Saccharomyces cerevisiae occurring in the presence of the hyper-recombination mutation hpr1. Aguilera A; Klein HL Genetics; 1989 Jul; 122(3):503-17. PubMed ID: 2668113 [TBL] [Abstract][Full Text] [Related]
13. The role of DNA repair genes in recombination between repeated sequences in yeast. Liefshitz B; Parket A; Maya R; Kupiec M Genetics; 1995 Aug; 140(4):1199-211. PubMed ID: 7498763 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the yeast SRB2 general transcription factor suppress hpr1-induced recombination and show defects in DNA repair. Piruat JI; Aguilera A Genetics; 1996 Aug; 143(4):1533-42. PubMed ID: 8844143 [TBL] [Abstract][Full Text] [Related]
15. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Chen C; Umezu K; Kolodner RD Mol Cell; 1998 Jul; 2(1):9-22. PubMed ID: 9702187 [TBL] [Abstract][Full Text] [Related]
16. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. Gangloff S; Zou H; Rothstein R EMBO J; 1996 Apr; 15(7):1715-25. PubMed ID: 8612596 [TBL] [Abstract][Full Text] [Related]
17. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks. Larionov V; Kouprina N; Eldarov M; Perkins E; Porter G; Resnick MA Yeast; 1994 Jan; 10(1):93-104. PubMed ID: 8203155 [TBL] [Abstract][Full Text] [Related]
18. RAD52-dependent and -independent homologous recombination initiated by Flp recombinase at a single FRT site flanked by direct repeats. Prado F; González-Barrera S; Aguilera A Mol Gen Genet; 2000 Feb; 263(1):73-80. PubMed ID: 10732675 [TBL] [Abstract][Full Text] [Related]
19. Inverted repeat-stimulated sister-chromatid exchange events are RAD1-independent but reduced in a msh2 mutant. Nag DK; Fasullo M; Dong Z; Tronnes A Nucleic Acids Res; 2005; 33(16):5243-9. PubMed ID: 16166656 [TBL] [Abstract][Full Text] [Related]
20. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Rattray AJ; Symington LS Genetics; 1994 Nov; 138(3):587-95. PubMed ID: 7851757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]