These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
450 related articles for article (PubMed ID: 7816199)
1. Inhibitory and excitatory projections from the dorsal raphe nucleus to neurons in the dorsolateral periaqueductal gray matter in slices of midbrain maintained in vitro. Stezhka VV; Lovick TA Neuroscience; 1994 Sep; 62(1):177-87. PubMed ID: 7816199 [TBL] [Abstract][Full Text] [Related]
2. Influence of the dorsal and median raphe nuclei on neurons in the periaqueductal gray matter: role of 5-hydroxytryptamine. Lovick TA Neuroscience; 1994 Apr; 59(4):993-1000. PubMed ID: 8058131 [TBL] [Abstract][Full Text] [Related]
3. Projections from dorsal raphe nucleus to the periaqueductal grey matter: studies in slices of rat midbrain maintained in vitro. Stezhka VV; Lovick TA Neurosci Lett; 1997 Jul; 230(1):57-60. PubMed ID: 9259463 [TBL] [Abstract][Full Text] [Related]
4. Serotonergic transmission in the periaqueductal gray matter in relation to aversive behaviour: morphological evidence for direct modulatory effects on identified output neurons. Lovick TA; Parry DM; Stezhka VV; Lumb BM Neuroscience; 2000; 95(3):763-72. PubMed ID: 10670443 [TBL] [Abstract][Full Text] [Related]
5. Direct projections from the midbrain periaqueductal gray and the dorsal raphe nucleus to the trigeminal sensory complex in the rat. Li YQ; Takada M; Shinonaga Y; Mizuno N Neuroscience; 1993 May; 54(2):431-43. PubMed ID: 7687754 [TBL] [Abstract][Full Text] [Related]
6. Serotonergic influence from nucleus raphe obscurus on neurones in the periaqueductal grey matter in the rat. Lovick TA Brain Res; 1993 Mar; 606(1):92-8. PubMed ID: 8462008 [TBL] [Abstract][Full Text] [Related]
7. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia. Coimbra NC; De Oliveira R; Freitas RL; Ribeiro SJ; Borelli KG; Pacagnella RC; Moreira JE; da Silva LA; Melo LL; Lunardi LO; Brandão ML Exp Neurol; 2006 Jan; 197(1):93-112. PubMed ID: 16303128 [TBL] [Abstract][Full Text] [Related]
8. The inhibitory effect of the ventrolateral periaqueductal grey matter on neurones in the rostral ventrolateral medulla involves a relay in the medullary raphe nuclei. Wang WH; Lovick TA Exp Brain Res; 1993; 94(2):295-300. PubMed ID: 8359247 [TBL] [Abstract][Full Text] [Related]
9. Midbrain influences on ventrolateral medullo-spinal neurones in the rat. Lovick TA Exp Brain Res; 1992; 90(1):147-52. PubMed ID: 1521603 [TBL] [Abstract][Full Text] [Related]
10. Role of nitric oxide in medullary raphe-evoked inhibition of neuronal activity in the periaqueductal gray matter. Lovick TA Neuroscience; 1996 Dec; 75(4):1203-9. PubMed ID: 8938753 [TBL] [Abstract][Full Text] [Related]
11. Involvement of GABA in medullary raphe-evoked modulation of neuronal activity in the periaqueductal grey matter in the rat. Lovick TA Exp Brain Res; 2001 Mar; 137(2):214-8. PubMed ID: 11315550 [TBL] [Abstract][Full Text] [Related]
12. Attenuation of the midbrain-evoked defense reaction by selective stimulation of medullary raphe neurons in rats. Schenberg LC; Lovick TA Am J Physiol; 1995 Dec; 269(6 Pt 2):R1378-89. PubMed ID: 8594940 [TBL] [Abstract][Full Text] [Related]
13. Collateralization of periaqueductal gray neurons to forebrain or diencephalon and to the medullary nucleus raphe magnus in the rat. Reichling DB; Basbaum AI Neuroscience; 1991; 42(1):183-200. PubMed ID: 1713655 [TBL] [Abstract][Full Text] [Related]
14. Dorsal raphe nucleus regulation of a panic-like defensive behavior evoked by chemical stimulation of the rat dorsal periaqueductal gray matter. Miguel TL; Pobbe RL; Spiacci Junior A; Zangrossi Junior H Behav Brain Res; 2010 Dec; 213(2):195-200. PubMed ID: 20451559 [TBL] [Abstract][Full Text] [Related]
15. An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Hajós M; Richards CD; Székely AD; Sharp T Neuroscience; 1998 Nov; 87(1):95-108. PubMed ID: 9722144 [TBL] [Abstract][Full Text] [Related]
16. Physiological influence of lateral proisocortex on the midbrain periaqueductal gray: evidence for a role of an excitatory amino acid in synaptic activation. Behbehani MM; Jiang M; Ennis M; Shipley MT Neuroscience; 1993 Apr; 53(3):787-95. PubMed ID: 8487955 [TBL] [Abstract][Full Text] [Related]
17. Excitatory projections from the anterior hypothalamus to periaqueductal gray neurons that project to the medulla: a functional anatomical study. Semenenko FM; Lumb BM Neuroscience; 1999; 94(1):163-74. PubMed ID: 10613506 [TBL] [Abstract][Full Text] [Related]
18. Differential origin of brainstem serotoninergic projections to the midbrain periaqueductal gray and superior colliculus of the rat. Beitz AJ; Clements JR; Mullett MA; Ecklund LJ J Comp Neurol; 1986 Aug; 250(4):498-509. PubMed ID: 3760251 [TBL] [Abstract][Full Text] [Related]
19. [The effects of stimulation of nucleus raphe obscurus on Fos-expression evoked by activiting dorsal periaqueductal gray and unit discharge in ventral periaqueductal gray in rat]. Huang JH; Li P; Gong QL Sheng Li Xue Bao; 1996 Apr; 48(2):149-56. PubMed ID: 9389166 [TBL] [Abstract][Full Text] [Related]
20. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Jiang M; Behbehani MM Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]