These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 7816603)
1. Family A and family B DNA polymerases are structurally related: evolutionary implications. Zhu W; Ito J Nucleic Acids Res; 1994 Dec; 22(24):5177-83. PubMed ID: 7816603 [TBL] [Abstract][Full Text] [Related]
2. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase. Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997 [TBL] [Abstract][Full Text] [Related]
3. Mutagenesis of a highly conserved lysine 340 of the PRD1 DNA polymerase. Zhu W; Leavitt MC; Jung G; Ito J Biochim Biophys Acta; 1994 Oct; 1219(2):260-6. PubMed ID: 7918620 [TBL] [Abstract][Full Text] [Related]
4. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. de Vega M; Lazaro JM; Salas M; Blanco L EMBO J; 1996 Mar; 15(5):1182-92. PubMed ID: 8605889 [TBL] [Abstract][Full Text] [Related]
5. Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site. Park Y; Choi H; Lee DS; Kim Y Mol Cells; 1997 Jun; 7(3):419-24. PubMed ID: 9264032 [TBL] [Abstract][Full Text] [Related]
6. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase. Villbrandt B; Sobek H; Frey B; Schomburg D Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459 [TBL] [Abstract][Full Text] [Related]
7. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment). Lam WC; Van der Schans EJ; Joyce CM; Millar DP Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221 [TBL] [Abstract][Full Text] [Related]
8. DNA polymerase active site is highly mutable: evolutionary consequences. Patel PH; Loeb LA Proc Natl Acad Sci U S A; 2000 May; 97(10):5095-100. PubMed ID: 10805772 [TBL] [Abstract][Full Text] [Related]
9. A general structure for DNA-dependent DNA polymerases. Blanco L; Bernad A; Blasco MA; Salas M Gene; 1991 Apr; 100():27-38. PubMed ID: 2055476 [TBL] [Abstract][Full Text] [Related]
10. Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'-->5' exonuclease activity. Frey MW; Nossal NG; Capson TL; Benkovic SJ Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2579-83. PubMed ID: 8464864 [TBL] [Abstract][Full Text] [Related]
11. DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies. Reha-Krantz LJ; Stocki S; Nonay RL; Dimayuga E; Goodrich LD; Konigsberg WH; Spicer EK Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2417-21. PubMed ID: 2006180 [TBL] [Abstract][Full Text] [Related]
12. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3'-5' exonuclease and strand-displacement activities. Soengas MS; Esteban JA; Lázaro JM; Bernad A; Blasco MA; Salas M; Blanco L EMBO J; 1992 Nov; 11(11):4227-37. PubMed ID: 1396603 [TBL] [Abstract][Full Text] [Related]
13. Elucidation of the metal-binding properties of the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase by lanthanide(III) luminescence spectroscopy. Frey MW; Frey ST; Horrocks WD; Kaboord BF; Benkovic SJ Chem Biol; 1996 May; 3(5):393-403. PubMed ID: 8807868 [TBL] [Abstract][Full Text] [Related]
14. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Cowart M; Gibson KJ; Allen DJ; Benkovic SJ Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768 [TBL] [Abstract][Full Text] [Related]
15. Site-specific mutagenesis of PRD1 DNA polymerase: mutations in highly conserved regions of the family B DNA polymerase. Jung GH; Leavitt MC; Schultz M; Ito J Biochem Biophys Res Commun; 1990 Aug; 170(3):1294-300. PubMed ID: 2202298 [TBL] [Abstract][Full Text] [Related]
16. Metal activation of synthetic and degradative activities of phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication. Esteban JA; Bernad A; Salas M; Blanco L Biochemistry; 1992 Jan; 31(2):350-9. PubMed ID: 1310035 [TBL] [Abstract][Full Text] [Related]
17. Evidence favouring the hypothesis of a conserved 3'-5' exonuclease active site in DNA-dependent DNA polymerases. Blanco L; Bernad A; Salas M Gene; 1992 Mar; 112(1):139-44. PubMed ID: 1551594 [TBL] [Abstract][Full Text] [Related]
18. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity. Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692 [TBL] [Abstract][Full Text] [Related]
19. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Beese LS; Derbyshire V; Steitz TA Science; 1993 Apr; 260(5106):352-5. PubMed ID: 8469987 [TBL] [Abstract][Full Text] [Related]
20. Primary structure of the DNA polymerase I gene of an alpha-proteobacterium, Rhizobium leguminosarum, and comparison with other family A DNA polymerases. Huang YP; Downie JA; Ito J Curr Microbiol; 1999 Jun; 38(6):355-9. PubMed ID: 10341077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]