BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7816963)

  • 1. [Estimation by the Hui and Walter method of the sensitivity and specificity of a diagnostic test in the absence of a reference test: results of a simulation study].
    Bertrand P; Benichou J; Chastang C
    Rev Epidemiol Sante Publique; 1994; 42(6):502-11. PubMed ID: 7816963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Diagnostic Tests With Near-Perfect Specificity: Use of a Hui-Walter Approach When Designing a Trial of a DIVA Test for Bovine Tuberculosis.
    Rydevik G; Innocent GT; McKendrick IJ
    Front Vet Sci; 2018; 5():192. PubMed ID: 30159319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian estimation for performance measures of two diagnostic tests in the presence of verification bias.
    Aragon DC; Martinez EZ; Achcar JA
    J Biopharm Stat; 2010 Jul; 20(4):821-34. PubMed ID: 20496208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonparametric estimation of ROC curves in the absence of a gold standard.
    Zhou XH; Castelluccio P; Zhou C
    Biometrics; 2005 Jun; 61(2):600-9. PubMed ID: 16011710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosing diagnostic tests: evaluating the assumptions underlying the estimation of sensitivity and specificity in the absence of a gold standard.
    Toft N; Jørgensen E; Højsgaard S
    Prev Vet Med; 2005 Apr; 68(1):19-33. PubMed ID: 15795013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of infection prevalence and sensitivity in a stratified two-stage sampling design employing highly specific diagnostic tests when there is no gold standard.
    Miller E; Huppert A; Novikov I; Warburg A; Hailu A; Abbasi I; Freedman LS
    Stat Med; 2015 Nov; 34(25):3349-61. PubMed ID: 26033190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of screening tests without a gold standard-A pragmatic approach with virtual reference testing.
    Hahn A; Schwarz NG; Frickmann H
    Acta Trop; 2019 Nov; 199():105118. PubMed ID: 31369728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample size determination for estimation of the accuracy of two conditionally independent tests in the absence of a gold standard.
    Georgiadis MP; Johnson WO; Gardner IA
    Prev Vet Med; 2005 Sep; 71(1-2):1-10. PubMed ID: 16076507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forcing dichotomous disease classification from reference standards leads to bias in diagnostic accuracy estimates: A simulation study.
    Jenniskens K; Naaktgeboren CA; Reitsma JB; Hooft L; Moons KGM; van Smeden M
    J Clin Epidemiol; 2019 Jul; 111():1-10. PubMed ID: 30904568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dependent errors in the assessment of diagnostic or screening test accuracy when the reference standard is imperfect.
    Walter SD; Macaskill P; Lord SJ; Irwig L
    Stat Med; 2012 May; 31(11-12):1129-38. PubMed ID: 22351623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of sample size and bias on the reliability of estimates of error: a comparative study of Dahlberg's formula.
    Springate SD
    Eur J Orthod; 2012 Apr; 34(2):158-63. PubMed ID: 21447784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hui and Walter's latent-class reference-free approach may be more useful in assessing agreement than diagnostic performance.
    Bertrand P; Bénichou J; Grenier P; Chastang C
    J Clin Epidemiol; 2005 Jul; 58(7):688-700. PubMed ID: 15939220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic test accuracy and prevalence inferences based on joint and sequential testing with finite population sampling.
    Su CL; Gardner IA; Johnson WO
    Stat Med; 2004 Jul; 23(14):2237-55. PubMed ID: 15236428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bias due to composite reference standards in diagnostic accuracy studies.
    Schiller I; van Smeden M; Hadgu A; Libman M; Reitsma JB; Dendukuri N
    Stat Med; 2016 Apr; 35(9):1454-70. PubMed ID: 26555849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian estimation of intervention effect with pre- and post-misclassified binomial data.
    Stamey JD; Seaman JW; Young DM
    J Biopharm Stat; 2007; 17(1):93-108. PubMed ID: 17219757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical methods for the meta-analysis of diagnostic tests must take into account the use of surrogate standards.
    Kang J; Brant R; Ghali WA
    J Clin Epidemiol; 2013 May; 66(5):566-574.e1. PubMed ID: 23466018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian approach to simultaneously adjusting for verification and reference standard bias in diagnostic test studies.
    Lu Y; Dendukuri N; Schiller I; Joseph L
    Stat Med; 2010 Oct; 29(24):2532-43. PubMed ID: 20799249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending Hui-Walter framework to correlated outcomes with application to diagnosis tests of an eye disease among premature infants.
    Liu YL; Ying GS; Quinn GE; Zhou XH; Chen Y
    Stat Med; 2022 Feb; 41(3):433-448. PubMed ID: 34859902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test.
    Dendukuri N; Rahme E; Bélisle P; Joseph L
    Biometrics; 2004 Jun; 60(2):388-97. PubMed ID: 15180664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.