These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7817047)

  • 1. Limited capacity for glyconeogenesis from alanine by diaphragm muscle.
    Talmadge RJ; Mills S; Powers SK; Silverman H
    Respir Physiol; 1994 Oct; 98(2):153-64. PubMed ID: 7817047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose uptake and glycogen synthesis in normal and chronically active muscles.
    Talmadge RJ; Silverman H
    Am J Physiol; 1993 Mar; 264(3 Pt 1):E328-33. PubMed ID: 8460680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones.
    Bonen A; McDermott JC; Tan MH
    Am J Physiol; 1990 Apr; 258(4 Pt 1):E693-700. PubMed ID: 2185650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic properties of the inferior rectus, extensor digitorum longus, diaphragm and soleus muscles of the mouse.
    Luff AR
    J Physiol; 1981; 313():161-71. PubMed ID: 7277215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance to rocuronium of rat diaphragm as compared with limb muscles.
    Huang L; Yang M; Chen L; Li S
    J Surg Res; 2014 Dec; 192(2):471-9. PubMed ID: 25112806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycogen synthesis from lactate in a chronically active muscle.
    Talmadge RJ; Scheide JI; Silverman H
    J Appl Physiol (1985); 1989 May; 66(5):2231-8. PubMed ID: 2526116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of exercise and glycogen depletion on glyconeogenesis in muscle.
    Bonen A; Homonko DA
    J Appl Physiol (1985); 1994 Apr; 76(4):1753-8. PubMed ID: 8045856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of glycogen synthesis is shared between glucose transport and glycogen synthase in skeletal muscle fibers.
    Azpiazu I; Manchester J; Skurat AV; Roach PJ; Lawrence JC
    Am J Physiol Endocrinol Metab; 2000 Feb; 278(2):E234-43. PubMed ID: 10662707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional characterization of simvastatin-induced myotoxicity in different skeletal muscles.
    Simsek Ozek N; Bal IB; Sara Y; Onur R; Severcan F
    Biochim Biophys Acta; 2014 Jan; 1840(1):406-15. PubMed ID: 24045089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A putative pathway of glyconeogenesis in skeletal muscle.
    Odedra BR; Palmer TN
    Biosci Rep; 1981 Feb; 1(2):157-65. PubMed ID: 7295890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glyconeogenic and glycogenic enzymes in chronically active and normal skeletal muscle.
    Talmadge RJ; Silverman H
    J Appl Physiol (1985); 1991 Jul; 71(1):182-91. PubMed ID: 1917741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate metabolism in the perfused rat hindlimb.
    Shiota M; Golden S; Katz J
    Biochem J; 1984 Sep; 222(2):281-92. PubMed ID: 6383357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential expression of muscular dystrophy in diaphragm versus hindlimb muscles of mdx mice.
    Dupont-Versteegden EE; McCarter RJ
    Muscle Nerve; 1992 Oct; 15(10):1105-10. PubMed ID: 1406767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of insulin and of contraction on glucose metabolism in the perfused diaphragm muscle from normal and streptozotocin-treated rats.
    Beloff-Chain A; Chain EB; Rookledge KA
    Biochem J; 1971 Nov; 125(1):97-103. PubMed ID: 5158926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leptin directly alters lipid partitioning in skeletal muscle.
    Muoio DM; Dohm GL; Fiedorek FT; Tapscott EB; Coleman RA
    Diabetes; 1997 Aug; 46(8):1360-3. PubMed ID: 9231663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of exercise on insulin binding and glucose metabolism in muscle.
    Bonen A; Tan MH; Watson-Wright WM
    Can J Physiol Pharmacol; 1984 Dec; 62(12):1500-4. PubMed ID: 6397250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in isometric contractile properties of fast-twitch and slow-twitch skeletal muscle of C57BL/6J dy2J/dy2J dystrophic mice during postnatal development.
    Bressler BH; Jasch LG; Ovalle WK; Slonecker CE
    Exp Neurol; 1983 May; 80(2):457-70. PubMed ID: 6840250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine-sensitivity in fast and slow twitch muscle of normal and dystrophic (C57 BL/6J dy2J/dy2J) mice.
    Noireaud J; LĂ©oty C; Schmidt H
    Pflugers Arch; 1985 May; 404(2):185-9. PubMed ID: 4011409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles.
    Tallis J; Hill C; James RS; Cox VM; Seebacher F
    J Appl Physiol (1985); 2017 Jan; 122(1):170-181. PubMed ID: 27856719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of insulin on the pattern of glucose metabolism in the perfused working and Langendorff heart of normal and insulin-deficient rats.
    Chain EB; Mansford KR; Opie LH
    Biochem J; 1969 Nov; 115(3):537-46. PubMed ID: 5353528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.