These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 7817776)
21. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice]. Marini P; Guiot C; Baiotto B; Gabriele P Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459 [TBL] [Abstract][Full Text] [Related]
22. [Thermal distribution in the agar phantom by a new intracavitary RF applicator for prostate gland]. Inatomi H; Sugita A; Terashima H; Yoshiura T; Kunugita N; Norimura T; Tsuchiya T J UOEH; 1992 Mar; 14(1):39-45. PubMed ID: 1509211 [TBL] [Abstract][Full Text] [Related]
23. Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz. Chou CK; McDougall JA; Chan KW; Luk KH Int J Radiat Oncol Biol Phys; 1990 Oct; 19(4):1067-70. PubMed ID: 2211244 [TBL] [Abstract][Full Text] [Related]
24. Multilayer conformal applicator for microwave heating and brachytherapy treatment of superficial tissue disease. Juang T; Stauffer PR; Neuman DG; Schlorff JL Int J Hyperthermia; 2006 Nov; 22(7):527-44. PubMed ID: 17079212 [TBL] [Abstract][Full Text] [Related]
25. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating. Franconi C; Raganella L; Tiberio CA IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143 [TBL] [Abstract][Full Text] [Related]
26. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams. Chow JC; Jiang R Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985 [TBL] [Abstract][Full Text] [Related]
27. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design. Kumaradas JC; Sherar MD Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930 [TBL] [Abstract][Full Text] [Related]
28. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Kok HP; Crezee J Int J Hyperthermia; 2017 Jun; 33(4):378-386. PubMed ID: 27951733 [TBL] [Abstract][Full Text] [Related]
29. Endohyperthermia--experimental evaluation of a new therapeutic approach for treatment of biliary carcinoma. Weigert N; Eckel F; Born P; Erhardt W; Henke J; Werner M; Classen M; Rösch T Endoscopy; 2000 Apr; 32(4):306-10. PubMed ID: 10774970 [TBL] [Abstract][Full Text] [Related]
30. Application of a capacitive-coupling interstitial hyperthermia system at 27 MHz: study of different applicator configurations. Deurloo IK; Visser AG; Morawska M; van Geel CA; van Rhoon GC; Levendag PC Phys Med Biol; 1991 Jan; 36(1):119-32. PubMed ID: 2006211 [TBL] [Abstract][Full Text] [Related]
31. Comparison of the clinical effectiveness of the 433 MHz Lucite cone applicator with that of a conventional waveguide applicator in applications of superficial hyperthermia. Rietveld PJ; van Putten WL; van der Zee J; van Rhoon GC Int J Radiat Oncol Biol Phys; 1999 Feb; 43(3):681-7. PubMed ID: 10078656 [TBL] [Abstract][Full Text] [Related]
32. Development of the re-entrant type resonant cavity applicator for brain tumor hyperthermia - experimental heating results. Yabuhara T; Kato K; Tsuchiya K; Shigihara T; Uzuka T; Takahashi H Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5161-4. PubMed ID: 17945880 [TBL] [Abstract][Full Text] [Related]
33. Deep-heating characteristics of an RF capacitive heating device. Kato H; Hiraoka M; Nakajima T; Ishida T Int J Hyperthermia; 1985; 1(1):15-28. PubMed ID: 3915511 [TBL] [Abstract][Full Text] [Related]
34. Cooperative clinical studies of hyperthermia using a capacitive type heating device GHT-RF8(Greenytherm). Loh JJ; Seong JS; Suh CO; Kim GE; Chu SS; Pak KR; Lee CG; Kim BS; Kim SG; Seel DJ Yonsei Med J; 1989; 30(1):72-80. PubMed ID: 2741475 [TBL] [Abstract][Full Text] [Related]
35. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method. Shaw JA; Durney CH; Christensen DA IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734 [TBL] [Abstract][Full Text] [Related]
36. SAR analysis of the improved resonant cavity applicator with electrical shield and water bolus for deep tumors by a 3-D FEM. Shindo Y; Iseki Y; Yokoyama K; Arakawa J; Watanabe K; Kato K; Kubo M; Uzuka T; Takahashi H Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5679-82. PubMed ID: 23367219 [TBL] [Abstract][Full Text] [Related]
37. [The possibilities of hyperthermia from an engineering standpoint]. Saitoh Y; Matsuda J; Kato K Gan To Kagaku Ryoho; 1989 Apr; 16(4 Pt 2-2):1425-31. PubMed ID: 2730047 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of microwave hyperthermia applicators. Chou CK Bioelectromagnetics; 1992; 13(6):581-97. PubMed ID: 1482420 [TBL] [Abstract][Full Text] [Related]
39. An edge-element based finite element model of microwave heating in hyperthermia: method and verification. Kumaradas JC; Sherar MD Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929 [TBL] [Abstract][Full Text] [Related]
40. Present and future status of noninvasive selective deep heating using RF in hyperthermia. Kato H; Ishida T Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]