BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7818501)

  • 1. Determination of the mechanism of reaction for bile acid: CoA ligase.
    Kelley M; Vessey DA
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):945-9. PubMed ID: 7818501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the reaction mechanism for the XL-I form of bovine liver xenobiotic/medium-chain fatty acid:CoA ligase.
    Vessey DA; Kelley M
    Biochem J; 2001 Jul; 357(Pt 1):283-8. PubMed ID: 11415461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual role of divalent cations in the bile acid:CoA ligase catalyzed reaction.
    Kelley M; Vessey DA
    Biochim Biophys Acta; 1994 Nov; 1209(1):51-5. PubMed ID: 7947981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state kinetics of malonyl-CoA synthetase from Bradyrhizobium japonicum and evidence for malonyl-AMP formation in the reaction.
    Kim YS; Kang SW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):327-33. PubMed ID: 8297339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic characterization of cholyl-CoA glycine-taurine N-acyltransferase from bovine liver.
    Czuba B; Vessey DA
    J Biol Chem; 1980 Jun; 255(11):5296-9. PubMed ID: 7372637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism and metabolic role of pyruvate phosphate dikinase from Entamoeba histolytica.
    Varela-Gómez M; Moreno-Sánchez R; Pardo JP; Perez-Montfort R
    J Biol Chem; 2004 Dec; 279(52):54124-30. PubMed ID: 15485834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A product-inhibition study of the mechanism of mitochondrial octanoly-coenzyme A synthetase.
    Graham AB; Park MV
    Biochem J; 1969 Feb; 111(3):257-62. PubMed ID: 4304157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus anthracis o-succinylbenzoyl-CoA synthetase: reaction kinetics and a novel inhibitor mimicking its reaction intermediate.
    Tian Y; Suk DH; Cai F; Crich D; Mesecar AD
    Biochemistry; 2008 Nov; 47(47):12434-47. PubMed ID: 18973344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enzymology of short-chain fatty acyl-coenzyme A synthetase from seeds of Pinus radiata. Kinetic studies and a proposed reaction mechanism.
    Young OA; Anderson JW
    Biochem J; 1974 Mar; 137(3):435-42. PubMed ID: 4370933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of hepatic bile acid conjugation in the rat.
    Suchy FJ; Courchene SM; Balistreri WF
    Pediatr Res; 1985 Jan; 19(1):97-101. PubMed ID: 2982127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the chemical pathway for 4-chlorobenzoate:coenzyme A ligase catalysis.
    Chang KH; Dunaway-Mariano D
    Biochemistry; 1996 Oct; 35(41):13478-84. PubMed ID: 8873617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palmitoyl-coenzyme A synthetase. Mechanism of reaction.
    Bar-Tana J; Rose G; Brandes R; Shapiro B
    Biochem J; 1973 Feb; 131(2):199-209. PubMed ID: 4722436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of microsomal choloyl-coenzyme A synthetase.
    Vessey DA; Zakim D
    Biochem J; 1977 May; 163(2):357-62. PubMed ID: 17401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of liver cholic acid coenzyme A ligase activity. Evidence that separate microsomal enzymes are responsible for cholic acid and fatty acid activation.
    Polokoff MA; Bell RM
    J Biol Chem; 1977 Feb; 252(4):1167-71. PubMed ID: 14145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The elementary reactions of the pig heart pyruvate dehydrogenase complex. A study of the inhibition by phosphorylation.
    Walsh DA; Cooper RH; Denton RM; Bridges BJ; Randle PJ
    Biochem J; 1976 Jul; 157(1):41-67. PubMed ID: 183746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties and substrate specificity of some reactions catalysed by a short-chain fatty acyl-coenzyme A synthetase from seeds of Pinus radiata.
    Young OA; Anderson JW
    Biochem J; 1974 Mar; 137(3):423-33. PubMed ID: 4370976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on medium-chain fatty acyl-coenzyme a synthetase. Enzyme fraction I: mechanism of reaction and allosteric properties.
    Bar-Tana J; Rose G
    Biochem J; 1968 Sep; 109(2):275-82. PubMed ID: 5679369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acid: CoASH ligases from guinea pig and porcine liver microsomes. Purification and characterization.
    Vessey DA; Benfatto AM; Kempner ES
    J Biol Chem; 1987 Apr; 262(11):5360-5. PubMed ID: 3558396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism of beef pancreatic L-asparagine synthetase.
    Markin RS; Luehr CA; Schuster SM
    Biochemistry; 1981 Dec; 20(25):7226-32. PubMed ID: 6119111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.