BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 7818899)

  • 1. Nonradioactive, solid-phase DNase I footprints analyzed on an A.L.F. DNA Sequencer.
    Sandaltzopoulos R; Ansorge W; Becker PB; Voss H
    Biotechniques; 1994 Sep; 17(3):474, 476, 478. PubMed ID: 7818899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains.
    Hansen PK; Christensen JH; Nyborg J; Lillelund O; Thøgersen HC
    J Mol Biol; 1993 Sep; 233(2):191-202. PubMed ID: 8377197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonradiochemical DNase I footprinting by capillary electrophoresis.
    Wilson DO; Johnson P; McCord BR
    Electrophoresis; 2001 Jun; 22(10):1979-86. PubMed ID: 11465496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-range and highly sensitive DNase I footprinting by an automated infrared DNA sequencer.
    Machida M; Kamio H; Sorensen D
    Biotechniques; 1997 Aug; 23(2):300-3. PubMed ID: 9266087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Footprinting with an automated capillary DNA sequencer.
    Yindeeyoungyeon W; Schell MA
    Biotechniques; 2000 Nov; 29(5):1034-6, 1038, 1040-1. PubMed ID: 11084866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a comparative in vivo DNase I footprinting technique to analyze changes in protein-DNA interactions following phthalate exposure.
    Kuhl AJ; Ross SM; Gaido KW
    J Biochem Mol Toxicol; 2007; 21(5):312-22. PubMed ID: 17912698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for in vitro DNase I footprinting analysis on supercoiled templates.
    Tugores A; Brenner DA
    Biotechniques; 1994 Sep; 17(3):410-2. PubMed ID: 7818885
    [No Abstract]   [Full Text] [Related]  

  • 8. DNase I footprinting.
    Carey MF; Peterson CL; Smale ST
    Cold Spring Harb Protoc; 2013 May; 2013(5):469-78. PubMed ID: 23637368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection.
    Yardımcı GG; Frank CL; Crawford GE; Ohler U
    Nucleic Acids Res; 2014 Oct; 42(19):11865-78. PubMed ID: 25294828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully-automated, nonradioactive solid-phase sequencing of genomic DNA obtained from PCR.
    Rolfs A; Weber I
    Biotechniques; 1994 Oct; 17(4):782-7. PubMed ID: 7833042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative hydroxyl radical footprinting reveals cooperative interactions between DNA-binding subdomains of PU.1 and IRF4.
    Gross P; Yee AA; Arrowsmith CH; Macgregor RB
    Biochemistry; 1998 Jul; 37(27):9802-11. PubMed ID: 9657694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of pre-transcription complexes made at a bacteriophage T4 middle promoter: involvement of the T4 MotA activator and the T4 AsiA protein, a sigma 70 binding protein, in the formation of the open complex.
    Hinton DM; March-Amegadzie R; Gerber JS; Sharma M
    J Mol Biol; 1996 Feb; 256(2):235-48. PubMed ID: 8594193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic footprinting of Drosophila embryo nuclei by linker tag selection LM-PCR.
    Quivy JP; Becker PB
    Methods; 1997 Feb; 11(2):171-9. PubMed ID: 8993029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA.
    Craig ML; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Saecker RM; Record MT
    J Mol Biol; 1998 Nov; 283(4):741-56. PubMed ID: 9790837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Producing STR locus patterns from bloodstains and other forensic samples using an infrared fluorescent automated DNA sequencer.
    Roy R; Steffens DL; Gartside B; Jang GY; Brumbaugh JA
    J Forensic Sci; 1996 May; 41(3):418-24. PubMed ID: 8656180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Footprint of the retrotransposon R2Bm protein on its target site before and after cleavage.
    Christensen S; Eickbush TH
    J Mol Biol; 2004 Mar; 336(5):1035-45. PubMed ID: 15037067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental regulation of the Drosophila Tropomyosin I (TmI) gene is controlled by a muscle activator enhancer region that contains multiple cis-elements and binding sites for multiple proteins.
    Lin SC; Storti RV
    Dev Genet; 1997; 20(4):297-306. PubMed ID: 9254904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme.
    Stewart FJ; Panne D; Bickle TA; Raleigh EA
    J Mol Biol; 2000 May; 298(4):611-22. PubMed ID: 10788324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule detection of transcription factor binding to DNA in real time: specificity, equilibrium, and kinetic parameters.
    Nalefski EA; Nebelitsky E; Lloyd JA; Gullans SR
    Biochemistry; 2006 Nov; 45(46):13794-806. PubMed ID: 17105198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-selective interaction of the minor-groove interstrand cross-linking agent SJG-136 with naked and cellular DNA: footprinting and enzyme inhibition studies.
    Martin C; Ellis T; McGurk CJ; Jenkins TC; Hartley JA; Waring MJ; Thurston DE
    Biochemistry; 2005 Mar; 44(11):4135-47. PubMed ID: 15766241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.