These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 7818992)
1. Effect of carbon tetrachloride on inositol 1,4,5-trisphosphate dependent and independent regulation of rat brain microsomal Ca2+ flux. Pentyala SN; Vig PJ; Sekhon BS; Desaiah D Cell Signal; 1994 Jul; 6(5):561-7. PubMed ID: 7818992 [TBL] [Abstract][Full Text] [Related]
2. Microsomal Ca2+ flux modulation as an indicator of heavy metal toxicity. Pentyala S; Ruggeri J; Veerraju A; Yu Z; Bhatia A; Desaiah D; Vig P Indian J Exp Biol; 2010 Jul; 48(7):737-43. PubMed ID: 20929057 [TBL] [Abstract][Full Text] [Related]
3. The relationship between inositol trisphosphate receptor density and calcium release in brain microsomes. Joseph SK; Rice HL Mol Pharmacol; 1989 Mar; 35(3):355-9. PubMed ID: 2538712 [TBL] [Abstract][Full Text] [Related]
4. Inositol 1,4,5-trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1,4,5-trisphosphate receptor. Dufour JF; Arias IM; Turner TJ J Biol Chem; 1997 Jan; 272(5):2675-81. PubMed ID: 9006903 [TBL] [Abstract][Full Text] [Related]
5. Heterotrimeric Gi protein is associated with the inositol 1,4,5-trisphosphate receptor complex and modulates calcium flux. Neylon CB; Nickashin A; Tkachuk VA; Bobik A Cell Calcium; 1998 May; 23(5):281-9. PubMed ID: 9681191 [TBL] [Abstract][Full Text] [Related]
6. Luminal calcium regulates the inositol trisphosphate receptor of rat basophilic leukemia cells at a cytosolic site. Horne JH; Meyer T Biochemistry; 1995 Oct; 34(39):12738-46. PubMed ID: 7548027 [TBL] [Abstract][Full Text] [Related]
7. Inositol 1,4,5-trisphosphate receptor and ryanodine receptor in the aging brain of Wistar rats. Martini A; Battaini F; Govoni S; Volpe P Neurobiol Aging; 1994; 15(2):203-6. PubMed ID: 7838292 [TBL] [Abstract][Full Text] [Related]
8. The effect of mersalyl on inositol trisphosphate receptor binding and ion channel function. Joseph SK; Ryan SV; Pierson S; Renard-Rooney D; Thomas AP J Biol Chem; 1995 Feb; 270(8):3588-93. PubMed ID: 7533153 [TBL] [Abstract][Full Text] [Related]
9. Modulation of inositol 1,4,5-trisphosphate binding to the various inositol 1,4,5-trisphosphate receptor isoforms by thimerosal and cyclic ADP-ribose. Vanlingen S; Sipma H; De Smet P; Callewaert G; Missiaen L; De Smedt H; Parys JB Biochem Pharmacol; 2001 Apr; 61(7):803-9. PubMed ID: 11274965 [TBL] [Abstract][Full Text] [Related]
10. Pharmacological characterization of inositol-1,4,5,-trisphosphate binding to membranes from retina and retinal cultures. López-Colomé AM; Lee I J Neurosci Res; 1996 Apr; 44(2):149-56. PubMed ID: 8723223 [TBL] [Abstract][Full Text] [Related]
11. Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca2+. Cardy TJ; Traynor D; Taylor CW Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):785-93. PubMed ID: 9396721 [TBL] [Abstract][Full Text] [Related]
12. Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4, 5-trisphosphate receptor by Ca2+ and calmodulin. Sipma H; De Smet P; Sienaert I; Vanlingen S; Missiaen L; Parys JB; De Smedt H J Biol Chem; 1999 Apr; 274(17):12157-62. PubMed ID: 10207043 [TBL] [Abstract][Full Text] [Related]
13. FK506 induces biphasic Ca2+ release from microsomal vesicles of rat pancreatic acinar cells. Ozawa T Int J Mol Med; 2006 Jul; 18(1):187-91. PubMed ID: 16786171 [TBL] [Abstract][Full Text] [Related]
14. Loss of calcium homeostasis leads to progressive phase of chlordecone-potentiated carbon tetrachloride hepatotoxicity. Kodavanti PR; Rao VC; Mehendale HM Toxicol Appl Pharmacol; 1993 Sep; 122(1):77-87. PubMed ID: 7690997 [TBL] [Abstract][Full Text] [Related]
15. Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in a hepatic plasma membrane fraction. Guillemette G; Balla T; Baukal AJ; Catt KJ J Biol Chem; 1988 Apr; 263(10):4541-8. PubMed ID: 2832398 [TBL] [Abstract][Full Text] [Related]
16. Differential Regulation of Multiple Steps in Inositol 1,4,5-Trisphosphate Signaling by Protein Kinase C Shapes Hormone-stimulated Ca2+ Oscillations. Bartlett PJ; Metzger W; Gaspers LD; Thomas AP J Biol Chem; 2015 Jul; 290(30):18519-33. PubMed ID: 26078455 [TBL] [Abstract][Full Text] [Related]
17. Delayed "all-or-none" activation of inositol 1,4,5-trisphosphate-dependent calcium signaling in single rat hepatocytes. Chiavaroli C; Bird G; Putney JW J Biol Chem; 1994 Oct; 269(41):25570-5. PubMed ID: 7523388 [TBL] [Abstract][Full Text] [Related]
18. Pharmacologic differentiation between inositol-1,4,5-trisphosphate-induced Ca2+ release and Ca2+- or caffeine-induced Ca2+ release from intracellular membrane systems. Palade P; Dettbarn C; Alderson B; Volpe P Mol Pharmacol; 1989 Oct; 36(4):673-80. PubMed ID: 2554117 [TBL] [Abstract][Full Text] [Related]
19. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. Walensky LD; Snyder SH J Cell Biol; 1995 Aug; 130(4):857-69. PubMed ID: 7642703 [TBL] [Abstract][Full Text] [Related]
20. Regulation of inositol 1,4,5-trisphosphate receptors in rat basophilic leukemia cells. I. Multiple conformational states of the receptor in a microsomal preparation. Mohr FC; Hershey PE; Zimányi I; Pessah IN Biochim Biophys Acta; 1993 Apr; 1147(1):105-14. PubMed ID: 8385492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]